Coronavirus (SARS-CoV-2) and the risk of obesity for critically illness and ICU admitted: Meta-analysis of the epidemiological evidence

Silvia Helena de Carvalho Sales-Peres, Lucas José de Azevedo-Silva, Rafaela Carolina Soares Bonato, Matheus de Carvalho Sales-Peres, Ana Carolina da Silvia Pinto, Joel Ferreira Santiago Junior, Silvia Helena de Carvalho Sales-Peres, Lucas José de Azevedo-Silva, Rafaela Carolina Soares Bonato, Matheus de Carvalho Sales-Peres, Ana Carolina da Silvia Pinto, Joel Ferreira Santiago Junior

Abstract

Objectives: To investigate the relationship between coronavirus disease 2019 (COVID-19) and obesity in critically ill patients admitted to the intensive care unit (ICU).

Methods: We systematically searched PubMed, SCOPUS, Embase, LILACS, and Web of Science for studies published up to April 27, 2020. The outcome of interest was composite poor outcome, comprising mortality and severe COVID-19. We used a standardized data extraction form to collect information from published reports of eligible studies. Heterogeneity and publication bias were assessed using I2 statistic and funnel plots, respectively.

Results: Nine studies including 6577 patients were selected for evaluation. The COVID-19 patients were 59.80% male and had comorbidities such as hypertension (51.51%), diabetes (30.3%), cardiovascular disease (16.66%), lung disease (15.99%), renal disease (7.49%), cancer (5.07%), and immunosuppression (1.8%). For patients with severe complications, the overall pooled event rates were 56.2% (random; 95% CI: 35.3-75.1; p = 0.015; I2 = 71.461) for obesity, 23.6% (random; 95% CI: 17.9-30.5; p = 0.000; I2 = 87.705) for type 2 diabetes, 45.9% (random; 95% CI: 38.0-53.9; p = 0.000; I2 = 90.152) for hypertension, 20.0% (random; 95% CI: 7.9-42.0; p = 0.000; I2 = 94.577) for smoking, 21.6% (random; 95% CI: 14.1-31.4%; p = 0.000, I2 = 92.983) for lung diseases, and 20.6% (random; 95% CI: 15.2-27.5; p = 0.000, I2 = 85.735) for cardiovascular diseases.

Discussion: This systematic review indicated the relationship between obesity, ICU admission, severe COVID-19, and disease progression in patients with COVID-19. Obese patients with hypertension, type 2 diabetes, smoking habit, lung disease, and/or cardiovascular disease should be cared for with increased attention.

Keywords: COVID-19; Hospitalization; ICU; Intubation; Obesity; SARS-CoV-2.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2020 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
PRISMA 2009 flow diagram.
Fig. 2
Fig. 2
Forest plots for severe complications in obese and non-obese individuals (a); obese individuals with severe complications (b); hypertension patients (c); type 2 diabetes patients (d); lung disease patients (e); smoker patients (f); cardiovascular disease patients (g).
Fig. 3
Fig. 3
Funnel plots of standard error by log risk ratio (X: log risk event; Y: standard error): Severe complications in obese individuals and non-obese individuals (a); severe complications in obese individuals (b); patients with hypertension (c); patients with type 2 diabetes mellitus (d); smoker patients (e); patients with lung diseases (f); patients with cardiovascular diseases (g).

References

    1. D’Antiga L. Coronaviruses and immunosuppressed patients: the facts during the third epidemic. Liver Transpl. 2020;26(6):832–834. doi: 10.1002/lt.25756.
    1. McBryde E. The value of early transmission dynamic studies in emerging infectious diseases. Lancet Infect Dis. 2020;20(5):512–513. doi: 10.1016/S1473-3099(20)30161-4.
    1. National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases. Coronavirus disease 2019 (COVID-19). Accessed: April 17, 2020. Available from: .
    1. Ahn D.G., Shin H.J., Kim M.H., et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19) J Microbiol Biotechnol. 2020;30(3):313–324.
    1. WHO Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available from . [Accessed 2 April 2020].
    1. WHO Summary of probable SARS cases with ons et of illness from 1 November 2002 to 31 July 2003. Available from . [Accessed 27 April 2020]
    1. WHO Middle East respiratory syndrome coronavirus (MERS-CoV) monthly summary, November 2019. Available from . [Accessed 27 April 2020]
    1. Pan X., Chen D., Xia Y., Wu X., Li T., Ou X., et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis. 2020;20(April (4)):410–411.
    1. Bai Y., Yao L., Wei T., Tian F., Jin D.Y., Chen L., et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323(14):1406–1407. doi: 10.1001/jama.2020.2565. [published online ahead of print, 2020 Feb 21]
    1. Rothe C., Schunk M., Sothmann P., Bretzel G., Froeschl G., Wallrauch C., et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382:970–971.
    1. National Health Service (NHS) Centre for Reviews and Dissemination . York Publishing Services; University of York: 2001. Report number 4. Undertaking systematic reviews of research on effectiveness. Available at:
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., The PRISMA Group Preferred reporting items for systematic reviews and meta- analyses: the PRISMA statement. PLoS Med. 2009;6(7) doi: 10.1371/journal.pmed1000097.
    1. Wells G.A., Shea B., O’Connell D., Peterson J., Welch V., Losos M., et al. Ottawa Hospital Research Institute; Ottawa, ON: 2011. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [webpage on the Internet] Available from: . [Accessed 27 April 2020]
    1. Mertz D., Kim T.H., Johnstone J., Lam P., Science M., Kuster S.P., et al. Populations at risk for severe or complicated influenza illness: a systematic review and meta-analysis. BMJ. 2012;347 f506.
    1. Borenstein M., Hedges L., Higgins J., Rothstein H. Wiley; Chichester, UK: 2009. Introduction to meta-analysis.
    1. Carvalho M.V., de Moraes S.L.D., Lemos C.A.A., Santiago Júnior J.F., Vasconcelos B.C.D.E., Pellizzer E.P. Surgical versus non-surgical treatment of actinic cheilitis: a systematic review and meta-analysis. Oral Dis. 2019;25(4):972–981. doi: 10.1111/odi.12916.
    1. de Medeiros F.C.F.L., Kudo G.A.H., Leme B.G., Saraiva P.P., Verri F.R., Honório H.M., et al. Dental implants in patients with osteoporosis: a systematic review with meta-analysis. Int J Oral Maxillofac Surg. 2018;47(4):480–491. doi: 10.1016/j.ijom.2017.05.021.
    1. Annibali S., Bignozzi I., Cristalli M.P., Graziani F., La Monaca G., Polimeni A. Periimplant marginal bone level: a systematic review and meta-analysis of studies comparing platform switching versus conventionally restored implants. J Clin Periodontol. 2012;39:1097–1113. doi: 10.1111/j.1600-051X.2012.01930.x.
    1. Deeks J.J., Higgins J.P.T., Altman D.G., et al. In: Cochrane handbook for systematic reviews of interventions version 6.0 (updated July 2019) Higgins J.P.T., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., editors. Cochrane; 2019. Chapter 10: analysing data and undertaking meta-analyses. Available from.
    1. Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A., et al. High prevalence of obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring) 2020;28(7):1195–1199. doi: 10.1002/oby.22831.
    1. Cure E., Cumhur Cure M. Comment on “Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19”. J Med Virol. 2020;(April) doi: 10.1002/jmv.25937. [published online ahead of print, 2020 Apr 8]
    1. Luzi L., Radelli M.G. Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol. 2020;57(June (6)):759–764. doi: 10.1007/s00592-020-01522-8. Epub 2020 Apr 5.
    1. Esposito K., Marfella R., Ciotola M., Di Palo C., Giugliano F., D’Armiento M., et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292:1440–1446.
    1. Alberti K.G., Zimmet P., Shaw J. Metabolic syndrome a new world-wide definition. A consensus statement from the lnternational Diabetes Federation. Diabet Med. 2006;23:469–480.
    1. Richardson S., Hirsh J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W., et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–2059. doi: 10.1001/jama.2020.6775. [published online ahead of print, 2020 Apr 22] [published correction appears in doi: 10.1001/jama.2020.7681]
    1. Kalligeros M., Shehadeh F., Mylona E.K., Benitez G., Beckwith C.G., Chan P.A., et al. Association of obesity with disease severity among patients with coronavirus disease 2019. Obesity (Silver Spring, MD) 2020;28(7):1200–1204. doi: 10.1002/oby.22859.
    1. Zheng K.I., Gao F., Wang X., Sun Q., Pan K., Wang T., et al. Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism. 2020;108 doi: 10.1016/j.metabol.2020.154244.
    1. Barrasa H., Rello J., Tejada S., Martín A., Balziskueta G., Vinuesa C., et al. SARS-CoV-2 in Spanish Intensive Care Units: Early experience with 15-day survival in Vitoria. Anaesth Crit Care Pain Med. 2020;(April) doi: 10.1016/j.accpm.2020.04.001. 2020;S2352-5568(20)30064-3. [published online ahead of print, 2020 Apr 9]
    1. Honce R., Schultz-Cherry S. Impact of obesity on influenza a virus pathogenesis, immune response, and evolution. Front Immunol. 2019;10(May):1071. doi: 10.3389/fimmu.2019.01071. eCollection 2019.
    1. GBD 2015 Obesity Collaborators, Afshin A., Forouzanfar M.H., et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.
    1. Kass D.A., Duggal P., Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet. 2020;395(10236):1544–1545. doi: 10.1016/S0140-6736(20)31024-2. Epub 2020 May 4.
    1. Ouchi N., Parker J.L., Lugus J.J., Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.
    1. Richard C., Wadowski M., Goruk S., Cameron L., Sharma A.M., Field C.J. Individuals with obesity and type 2 diabetes have additional immune dysfunction compared with obese individuals who are metabolically healthy. BMJ Open Diabetes Res Care. 2017;5(1)
    1. Maier H., Lopez R., Sanchez N., Ng S., Gresh L., Ojeda S., et al. Obesity increased the duration of influenza A virus shedding in adults. J Infect Dis. 2018;218(9):1372–1382. doi: 10.1093/infdis/jiy370.
    1. Honce R., Karlsson E.A., Wohlgemuth N., Estrada L.D., Meliopoulos V.A., Yao J., et al. Obesity-related microenvironment promotes emergence of virulent influenza virus strains. mBio. 2020;11(March (2)) doi: 10.1128/mBio.03341-19. pii: e03341-19.
    1. Yan J., Grantham M., Pantelic J., de Mesquita P.J.B., Albert B., Liu F., et al. Infectious virus in exhaled breath of syntomatic seasonal influenza cases from a college community. PNAS. 2018;115(5):1081–1086. doi: 10.1073/pnas.1716561115.
    1. Ahn S.Y., Sohn S.H., Lee S.Y., Park H.L., Park Y.W., Kim H., et al. The effect of lipopolysaccharide-induced obesity and its chronic inflammation on influenza virus-related pathology. Environ Toxicol Pharmacol. 2015;40(3):924–930.
    1. Guzik T.J., Mohiddin S.A., Dimarco A., Patel V., Savvatis K., Marelli-Berg F.M., et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;(April) cvaa106.
    1. Felsenstein S., Herbert J.A., McNamara P.S., Hedrichb C.M. COVID-19: Immunology and treatment options. Clin Immunol. 2020;215 doi: 10.1016/j.clim.2020.108448. [Epub ahead of print]

Source: PubMed

Подписаться