Exercise-induced pain changes associate with changes in muscle perfusion in knee osteoarthritis: exploratory outcome analyses of a randomised controlled trial

Elisabeth Bandak, Mikael Boesen, Henning Bliddal, Robert G C Riis, Sabrina Mai Nielsen, Louise Klokker, Cecilie Bartholdy, Janus Damm Nybing, Marius Henriksen, Elisabeth Bandak, Mikael Boesen, Henning Bliddal, Robert G C Riis, Sabrina Mai Nielsen, Louise Klokker, Cecilie Bartholdy, Janus Damm Nybing, Marius Henriksen

Abstract

Background: Exercise therapy is recommended for knee osteoarthritis (OA), but the underlying mechanisms of pain relief are not fully understood. The purpose of this study was to explore the effects of exercise on muscle perfusion assessed by dynamic contrast enhanced MRI (DCE-MRI) and its association with changes in pain in patients with knee OA.

Methods: Exploratory outcome analyses of a randomised controlled study with per-protocol analyses ( ClinicalTrials.gov : NCT01545258) performed at an outpatient clinic at a public hospital in Denmark. We compared 12 weeks of supervised exercise therapy 3 times per week (ET) with a no attention control group (CG). Analyses of covariance (ANCOVA) were used to assess group mean differences in changes from baseline to week 12 in knee muscle perfusion quantified by DCE-MRI, patient-reported pain and function using the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire, knee extensor and flexor muscle strength tests, and the six-minute walking test (6MWT). Spearman's correlation coefficients were used to determine the correlation between changes in DCE-MRI variables, KOOS, muscle strength, and 6MWT. The potential effect mediation of the DCE-MRI perfusion variables was investigated in a post-hoc mediation analysis.

Results: Of 60 participants randomised with knee osteoarthritis, 33 (ET, n = 16, CG, n = 17) adhered to the protocol and had complete DCE-MRI data. At follow-up, there were significant group differences in muscle perfusion changes and clinically relevant group differences in KOOS pain changes (10.7, 95% CI 3.3 to 18.1, P = 0.006) in favor of ET. There were no significant between-group differences on muscle strength and function. The changes in pain and muscle perfusion were significantly correlated (highest Spearman's rho = 0.42, P = 0.014). The mediation analyses were generally not statistically significant.

Conclusion: The pain-reducing effects of a 12-week exercise program are associated with changes in knee muscle perfusion quantified by DCE-MRI in individuals with knee OA, but whether the effects are mediated by muscle perfusion changes remains unclear.

Trial registration: ClinicalTrials.gov: NCT01545258 , first posted March 6, 2012.

Keywords: Exercise; Muscle perfusion; Osteoarthritis; Pain.

Conflict of interest statement

MB is chairman of the medical and scientific board, Image Analysis Ltd., London, UK and has stock options. He has received fees/honoraria (<$10,000) covering travel/accommodation costs as well as a small yearly honorarium. All other authors have nothing to declare.

RR and JDN: Consultants for Image Analysis Ltd. (analyses of MRIs and conventional radiographs).

Figures

Fig. 1
Fig. 1
DCE-MRI analysis. DCE-MRI analysis is based on changes in signal intensity over time for each voxel within the VOI. The signal intensity changes calculated relatively to the baseline signal intensity and the changes over time can be plotted as time-intensity-curves (TICs): a TIC from a point of interest in the popliteal artery with the characteristics of tissue with high perfusion: rapid increase in signal intensity, which reaches a plateau and a subsequent rapid decrease (washout) (x-axis: time (s); y-axis: relative signal intensity (baseline = 1.0)). IRE: Initial Rate of Enhancement; ME: Maximal Enhancement; IRW: initial rate of washout. b Assignment and color–coding of the voxels within the ROIs based on the shape of the TICs: No enhancement (no color); Persistent (blue); Plateau (green) and Washout (red) represent the most perfused voxels. c Region of interests (ROIs) around the peri-articular knee muscles avoiding major vascular branches. Blue: extensor muscle; Yellow: flexor muscles. d Parametric map of Initial Rate of Enhancement. Brighter colors indicate higher values
Fig. 2
Fig. 2
Flow chart
Fig. 3
Fig. 3
Scatterplots of significant correlations

References

    1. National Institute for H, Clinical E . Osteoarthritis: national clinical guideline for care and management in adults. London: NICE; 2014.
    1. Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 2012;64(4):465–474. doi: 10.1002/acr.21596.
    1. McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, Bierma-Zeinstra SM, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil. 2014;22(3):363–388. doi: 10.1016/j.joca.2014.01.003.
    1. Fernandes L, Hagen KB, Bijlsma JWJ, Andreassen O, Christensen P, Conaghan PG, et al. EULAR recommendations for the non-pharmacological core management of hip and knee osteoarthritis. Ann Rheum Dis. 2013;72(7):1125–1135. doi: 10.1136/annrheumdis-2012-202745.
    1. Runhaar J, Luijsterburg P, Dekker J, Bierma-Zeinstra SM. Identifying potential working mechanisms behind the positive effects of exercise therapy on pain and function in osteoarthritis; a systematic review. Osteoarthr Cartil. 2015;23(7):1071–1082. doi: 10.1016/j.joca.2014.12.027.
    1. Beckwee D, Vaes P, Cnudde M, Swinnen E, Bautmans I. Osteoarthritis of the knee: why does exercise work? A qualitative study of the literature. Ageing Res Rev. 2013;12(1):226–236. doi: 10.1016/j.arr.2012.09.005.
    1. Henriksen M, Klokker L, Graven-Nielsen T, Bartholdy C, Schjodt JT, Bandak E, et al. Association of exercise therapy and reduction of pain sensitivity in patients with knee osteoarthritis: a randomized controlled trial. Arthritis Care Res(Hoboken) 2014;66(12):1836–1843. doi: 10.1002/acr.22375.
    1. Fransen M, McConnell S, Harmer AR, Van der Esch M, Simic M, Bennell KL. Exercise for osteoarthritis of the knee: a Cochrane systematic review. Br J Sports Med. 2015;49(24):1554–1557. doi: 10.1136/bjsports-2015-095424.
    1. Harris BA. The influence of endurance and resistance exercise on muscle capillarization in the elderly: a review. Acta Physiol Scand. 2005;185(2):89–97. doi: 10.1111/j.1365-201X.2005.01461.x.
    1. Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014;21(4):301–314. doi: 10.1111/micc.12117.
    1. Egginton S. Invited review: activity-induced angiogenesis. Pflugers Arch - Eur J Physiol. 2008;457(5):963. doi: 10.1007/s00424-008-0563-9.
    1. Bandak E, Boesen M, Bliddal H, Riis RG, Gudbergsen H, Henriksen M. Associations between muscle perfusion and symptoms in knee osteoarthritis: a cross sectional study. Osteoarthr Cartil. 2015;23(10):1721–1727. doi: 10.1016/j.joca.2015.05.032.
    1. Galbraith SM, Lodge MA, Taylor NJ, Rustin GJ, Bentzen S, Stirling JJ, et al. Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed. 2002;15(2):132–142. doi: 10.1002/nbm.731.
    1. Axelsen MB, Poggenborg RP, Stoltenberg M, Kubassova O, Boesen M, Horslev-Petersen K, et al. Reliability and responsiveness of dynamic contrast-enhanced magnetic resonance imaging in rheumatoid arthritis. Scand J Rheumatol. 2013;42(2):115–122. doi: 10.3109/03009742.2012.723745.
    1. Riis R.G.C., Gudbergsen H., Simonsen O., Henriksen M., Al-Mashkur N., Eld M., Petersen K.K., Kubassova O., Bay Jensen A.C., Damm J., Bliddal H., Arendt-Nielsen L., Boesen M. The association between histological, macroscopic and magnetic resonance imaging assessed synovitis in end-stage knee osteoarthritis: a cross-sectional study. Osteoarthritis and Cartilage. 2017;25(2):272–280. doi: 10.1016/j.joca.2016.10.006.
    1. Riis RG, Gudbergsen H, Henriksen M, Ballegaard C, Bandak E, Rottger D, et al. Synovitis assessed on static and dynamic contrast-enhanced magnetic resonance imaging and its association with pain in knee osteoarthritis: a cross-sectional study. Eur J Radiol. 2016;85(6):1099–1108. doi: 10.1016/j.ejrad.2016.03.017.
    1. Ballegaard C, Riis RGC, Bliddal H, Christensen R, Henriksen M, Bartels EM, et al. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study. Osteoarthr Cartil. 2014;22(7):933–940. doi: 10.1016/j.joca.2014.04.018.
    1. Loeuille D, Rat AC, Goebel JC, Champigneulle J, Blum A, Netter P, et al. Magnetic resonance imaging in osteoarthritis: which method best reflects synovial membrane inflammation?: correlations with clinical, macroscopic and microscopic features. Osteoarthr Cartil. 2009;17(9):1186–1192. doi: 10.1016/j.joca.2009.03.006.
    1. Weber MA, Krix M, Delorme S. Quantitative evaluation of muscle perfusion with CEUS and with MR. Eur Radiol. 2007;17(10):2663–2674. doi: 10.1007/s00330-007-0641-y.
    1. Kubassova O, Boesen M, Boyle RD, Cimmino MA, Jensen KE, Bliddal H, et al. Fast and robust analysis of dynamic contrast enhanced MRI datasets. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):261–269.
    1. Kubassova O, Boesen M, Cimmino MA, Bliddal H. A computer-aided detection system for rheumatoid arthritis MRI data interpretation and quantification of synovial activity. Eur J Radiol. 2010;74(3):67–72. doi: 10.1016/j.ejrad.2009.04.010.
    1. Boesen M, Kubassova O, Cimmino MA, Ostergaard M, Taylor P, Danneskiold-Samsoe B, et al. Dynamic contrast enhanced MRI can monitor the very early inflammatory treatment response upon intra-articular steroid injection in the knee joint: a case report with review of the literature. Arthritis. 2011;2011:578252. doi: 10.1155/2011/578252.
    1. Roos EM, Toksvig-Larsen S. Knee injury and osteoarthritis outcome score (KOOS) - validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes. 2003;1:17. doi: 10.1186/1477-7525-1-17.
    1. Lund H, Sondergaard K, Zachariassen T, Christensen R, Bulow P, Henriksen M, et al. Learning effect of isokinetic measurements in healthy subjects, and reliability and comparability of Biodex and lido dynamometers. Clin Physiol Funct Imaging. 2005;25(2):75–82. doi: 10.1111/j.1475-097X.2004.00593.x.
    1. Enright PL. The six-minute walk test. Respir Care. 2003;48(8):783–785.
    1. Boesen M, Kubassova O, Parodi M, Bliddal H, Innocenti S, Garlaschi G, et al. Comparison of the manual and computer-aided techniques for evaluation of wrist synovitis using dynamic contrast-enhanced MRI on a dedicated scanner. Eur J Radiol. 2011;77(2):202–206. doi: 10.1016/j.ejrad.2010.09.041.
    1. Riis RG, Henriksen M, Klokker L, Bartholdy C, Ellegaard K, Bandak E, et al. The effects of intra-articular glucocorticoids and exercise on pain and synovitis assessed on static and dynamic magnetic resonance imaging in knee osteoarthritis: exploratory outcomes from a randomized controlled trial. Osteoarthr Cartil. 2016.
    1. Collins NJ, Prinsen CAC, Christensen R, Bartels EM, Terwee CB, Roos EM. Knee injury and osteoarthritis outcome score (KOOS): systematic review and meta-analysis of measurement properties. Osteoarthr Cartil. 2016;24(8):1317–1329. doi: 10.1016/j.joca.2016.03.010.
    1. Kennedy DM, Stratford PW, Wessel J, Gollish JD, Penney D. Assessing stability and change of four performance measures: a longitudinal study evaluating outcome following total hip and knee arthroplasty. BMC Musculoskelet Disord. 2005;6(1):1–12. doi: 10.1186/1471-2474-6-3.
    1. Lydersen S. Statistical review: frequently given comments. Ann Rheum Dis. 2015;74(2):323–325. doi: 10.1136/annrheumdis-2014-206186.
    1. Kosuke Imai LK, Tingley D, Yamamoto T. Unpacking the black box of causality: learning about causal mechanisms from experimental and observational studies. Am Polit Sci Rev. 2011;105(4):765–789. doi: 10.1017/S0003055411000414.
    1. Dustin Tingley TY. Kentaro Hirose, Luke Keele, Kosuke Imai. Mediation: R package for causal mediation analysis. J Stat Softw. 2014;59(5):1–38.
    1. Bennell KL, Wrigley TV, Hunt MA, Lim BW, Hinman RS. Update on the role of muscle in the genesis and Management of Knee Osteoarthritis. Rheum Dis Clin N Am. 2013;39(1):145–176. doi: 10.1016/j.rdc.2012.11.003.
    1. Lange AK, Vanwanseele B, Fiatarone Singh MA. Strength training for treatment of osteoarthritis of the knee: a systematic review. Arthritis Rheum. 2008;59(10):1488–1494. doi: 10.1002/art.24118.
    1. de Rooij M, van der Leeden M, Heymans MW, Holla JF, Hakkinen A, Lems WF, et al. Prognosis of pain and physical functioning in patients with knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res(Hoboken) 2016;68(4):481–492. doi: 10.1002/acr.22693.
    1. Edwards RR, Cahalan C, Mensing G, Smith M, Haythornthwaite JA. Pain, catastrophizing, and depression in the rheumatic diseases. Nat Rev Rheumatol. 2011;7(4):216–224. doi: 10.1038/nrrheum.2011.2.
    1. Penninx BW, Rejeski WJ, Pandya J, Miller ME, Di BM, Applegate WB, et al. Exercise and depressive symptoms: a comparison of aerobic and resistance exercise effects on emotional and physical function in older persons with high and low depressive symptomatology. J Gerontol B Psychol Sci Soc Sci. 2002;57(2):124–132. doi: 10.1093/geronb/57.2.P124.
    1. Fransen M, Crosbie J, Edmonds J. Physical therapy is effective for patients with osteoarthritis of the knee: a randomized controlled clinical trial. J Rheumatol. 2001;28(1):156–164.
    1. Tanaka R, Ozawa J, Kito N, Moriyama H. Does exercise therapy improve the health-related quality of life of people with knee osteoarthritis? A systematic review and meta-analysis of randomized controlled trials. J Phys Ther Sci. 2015;27(10):3309–3314. doi: 10.1589/jpts.27.3309.
    1. Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord. 2008;9:116. doi: 10.1186/1471-2474-9-116.
    1. Hunter DJ, Altman RD, Cicuttini F, Crema MD, Duryea J, Eckstein F, et al. OARSI clinical trials recommendations: knee imaging in clinical trials in osteoarthritis. Osteoarthr Cartil. 2015;23(5):698–715. doi: 10.1016/j.joca.2015.03.012.
    1. Messier SP, Callahan LF, Golightly YM, Keefe FJ. OARSI clinical trials recommendations: design and conduct of clinical trials of lifestyle diet and exercise interventions for osteoarthritis. Osteoarthr Cartil. 2015;23(5):787–797. doi: 10.1016/j.joca.2015.03.008.
    1. McAlindon TE, Driban JB, Henrotin Y, Hunter DJ, Jiang GL, Skou ST, et al. OARSI clinical trials recommendations: design, conduct, and reporting of clinical trials for knee osteoarthritis. Osteoarthr Cartil. 2015;23(5):747–760. doi: 10.1016/j.joca.2015.03.005.
    1. Kaplan SH, Greenfield S, Ware JE., Jr Assessing the effects of physician-patient interactions on the outcomes of chronic disease. Med Care. 1989;27(3 Suppl):110–127. doi: 10.1097/00005650-198903001-00010.
    1. Benedetti F. Placebo effects: understanding the mechanisms in health and disease. Oxford: Oxford University Press; 2009.
    1. Henriksen M, Rosager S, Aaboe J, Graven-Nielsen T, Bliddal H. Experimental knee pain reduces muscle strength. J Pain. 2011;12(4):460–467. doi: 10.1016/j.jpain.2010.10.004.
    1. Holm B, Kristensen MT, Husted H, Kehlet H, Bandholm T. Thigh and knee circumference, knee-extension strength, and functional performance after fast-track total hip arthroplasty. PMR. 2011;3(2):117–124. doi: 10.1016/j.pmrj.2010.10.019.

Source: PubMed

Подписаться