Posttransplantation cyclophosphamide facilitates engraftment of major histocompatibility complex-identical allogeneic marrow in mice conditioned with low-dose total body irradiation

Leo Luznik, Laura Wendy Engstrom, Robert Iannone, Ephraim Joseph Fuchs, Leo Luznik, Laura Wendy Engstrom, Robert Iannone, Ephraim Joseph Fuchs

Abstract

Cyclophosphamide (Cy) has been studied extensively for its immunosuppressive properties and is frequently combined with total body irradiation (TBI) as conditioning prior to HLA-identical allogeneic blood or marrow transplantation (alloBMT) in humans. Because Cy is most effective at suppressing host-versus-graft reactions when the drug is given after the transplantation (Mayumi H et al. Transplant Proc. 1986;18:363-369), we investigated whether posttransplantation Cy could prevent rejection of allogeneic marrow in mice conditioned with low-dose TBI. In a mouse model, posttransplantation Cy reduced the dose of TBI required from 500 cGy to < or = 200 cGy for the engraftment of 10 million major histocompatibility complex (MHC)-identical marrow cells in 100% of recipients. In animals conditioned with low-dose TBI and posttransplantation Cy, donor chimerism was proportional to the dose of TBI, was present in multiple hematopoietic lineages, and was associated with the indefinite survival of donor-strain skin grafts. In contrast, animals conditioned with either TBI alone or posttransplantation Cy alone failed to achieve engraftment after alloBMT and contained antidonor cytotoxic T-cells. Although <5% donor chimerism could be induced without TBI by transplanting > or = 50 million MHC-identical cells and administering posttransplantation Cy, the addition of low-dose TBI reduced the dose of donor cells required for alloengraftment and increased long-term donor chimerism to >50%. These data demonstrate that low-dose TBI and posttransplantation Cy cooperate to prevent graft rejection following the transplantation of standard doses of MHC-identical marrow cells.

Source: PubMed

Подписаться