Maturation of the human striatal dopamine system revealed by PET and quantitative MRI

Bart Larsen, Valur Olafsson, Finnegan Calabro, Charles Laymon, Brenden Tervo-Clemmens, Elizabeth Campbell, Davneet Minhas, David Montez, Julie Price, Beatriz Luna, Bart Larsen, Valur Olafsson, Finnegan Calabro, Charles Laymon, Brenden Tervo-Clemmens, Elizabeth Campbell, Davneet Minhas, David Montez, Julie Price, Beatriz Luna

Abstract

The development of the striatum dopamine (DA) system through human adolescence, a time of increased sensation seeking and vulnerability to the emergence of psychopathology, has been difficult to study due to pediatric restrictions on direct in vivo assessments of DA. Here, we applied neuroimaging in a longitudinal sample of n = 146 participants aged 12-30. R2', an MR measure of tissue iron which co-localizes with DA vesicles and is necessary for DA synthesis, was assessed across the sample. In the 18-30 year-olds (n = 79) we also performed PET using [11C]dihydrotetrabenazine (DTBZ), a measure of presynaptic vesicular DA storage, and [11C]raclopride (RAC), an indicator of D2/D3 receptor availability. We observed decreases in D2/D3 receptor availability with age, while presynaptic vesicular DA storage (as measured by DTBZ), which was significantly associated with R2' (standardized coefficient = 0.29, 95% CI = [0.11, 0.48]), was developmentally stable by age 18. Our results provide new evidence for maturational specialization of the striatal DA system through adolescence.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1. Developmental effects.
Fig. 1. Developmental effects.
Age related-differences in Raclopride assessment of available D2/D3 receptor concentration (N = 78 individuals, 128 sessions; outlier removals: NAcc = 3, putamen = 1, caudate = 1), DTBZ assessment of VMAT2 concentration (N = 74 individuals, 119 sessions; outlier removals: NAcc = 1, putamen = 2, caudate = 0), and R2′ assessment of tissue iron content (N = 121 individuals, 180 sessions; outlier removals: NAcc = 2, putamen = 1, caudate = 2) in the striatum. All analyses were conducted using linear mixed-effects models. Model parameters can be found in Table 1.+p < 0.05 uncorrected, *p < 0.05, ***p < 0.001, ****p < 0.0001 Bonferroni corrected. DTBZ BP [11C]Dihydrotetrabenazine binding potential; Raclopride BP [11C]Raclopride binding potential.
Fig. 2. Association between R2′ and [11C]Dihydrotetrabenazine…
Fig. 2. Association between R2′ and [11C]Dihydrotetrabenazine binding potential (DTBZ BP) in the nucleus accumbens.
a Tissue iron, assessed with R2′, is significantly positively associated with VMAT2 (N= 98 sessions), assessed with [11C]Dihydrotetrabenazine binding potential (DTBZ BP). Results are from a linear mixed-effects model (*p< 0.05 Bonferroni corrected). b This relationship remains after regressing age effects out of both variables (age corrected). c Cross-lagged structural equation model indicating within-subject residualized change in DTBZ BP and R2′ at visit two (bolded) are significantly positively correlated (N = 30 individuals, 60 sessions; *p < 0.05, **p < 0.01). d Visual depiction of the effect from c.
Fig. 3. Schematic depiction of PET imaging…
Fig. 3. Schematic depiction of PET imaging results and prior work from rodent models of dopamine system development in the striatum.
Results from the present study are indicated in dashed lines, and schematic representations of age trajectories from developmental rodent models are depicted in solid lines. DA dopamine; DTBZ [11C]Dihydrotetrabenazine binding potential, Raclopride [11C]Raclopride binding potential; C-Pu caudate-putamen; VS ventral striatum; NAcc nucleus accumbens.

References

    1. Harden KP, Tucker-Drob EM. Individual differences in the development of sensation seeking and impulsivity during adolescence: further evidence for a dual systems model. Dev. Psychol. 2011;47:739–746. doi: 10.1037/a0023279.
    1. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav Rev. 2000;24:417–463. doi: 10.1016/S0149-7634(00)00014-2.
    1. Steinberg L. A dual systems model of adolescent risk-taking. Dev. Psychobiol. 2010;52:216–224.
    1. Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci. Biobehav. Rev. 2018;94:179–195. doi: 10.1016/j.neubiorev.2018.09.005.
    1. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 2008;9:947–957. doi: 10.1038/nrn2513.
    1. Dahl RE, Allen NB, Wilbrecht L, Suleiman AB. Importance of investing in adolescence from a developmental science perspective. Nature. 2018;554:441–450. doi: 10.1038/nature25770.
    1. Luna B, Marek S, Larsen B, Tervo-Clemmens B, Chahal R. An integrative model of the maturation of cognitive control. Annu Rev. Neurosci. 2015;38:151–170. doi: 10.1146/annurev-neuro-071714-034054.
    1. Shulman EP, et al. The dual systems model: review, reappraisal, and reaffirmation. Dev. Cogn. Neurosci. 2016;17:103–117. doi: 10.1016/j.dcn.2015.12.010.
    1. Andersen SL, Rutstein M, Benzo JM, Hostetter JC, Teicher MH. Sex differences in dopamine receptor overproduction and elimination. Neuroreport. 1997;8:1495–1498. doi: 10.1097/00001756-199704140-00034.
    1. Tarazi FI, Tomasini EC, Baldessarini RJ. Postnatal development of dopamine D4-like receptors in rat forebrain regions: comparison with D2-like receptors. Dev. Brain Res. 1998;110:227–233. doi: 10.1016/S0165-3806(98)00111-4.
    1. Teicher MH, Andersen SL, Hostetter JC. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Dev. Brain Res. 1995;89:167–172. doi: 10.1016/0165-3806(95)00109-Q.
    1. Giorgi O, et al. Developmental and age-related changes in D1-dopamine receptors and dopamine content in the rat striatum. Brain Res. 1987;432:283–290. doi: 10.1016/0165-3806(87)90053-8.
    1. Rao PA, Molinoff PB, Joyce JN. Ontogeny of dopamine D1 and D2 receptor subtypes in rat basal ganglia: a quantitative autoradiographic study. Brain Res. Dev. Brain Res. 1991;60:161–177. doi: 10.1016/0165-3806(91)90045-K.
    1. Moll GH, et al. Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Dev. Brain Res. 2000;119:251–257. doi: 10.1016/S0165-3806(99)00182-0.
    1. Tarazi FI, Tomasini EC, Baldessarini RJ. Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neurosci. Lett. 1998;254:21–24. doi: 10.1016/S0304-3940(98)00644-2.
    1. Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia. 1996;17:83–93. doi: 10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>;2-7.
    1. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–1060. doi: 10.1016/S1474-4422(14)70117-6.
    1. Ortega R, Cloetens P, Devès G, Carmona A, Bohic S. Iron storage within dopamine neurovesicles revealed by chemical nano-imaging. PloS ONE. 2007;2:e925. doi: 10.1371/journal.pone.0000925.
    1. Zucca FA, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog. Neurobiol. 2017;155:96–119. doi: 10.1016/j.pneurobio.2015.09.012.
    1. Adisetiyo V, et al. Multimodal MR imaging of brain iron in attention deficit hyperactivity disorder: a noninvasive biomarker that responds to psychostimulant treatment? Radiology. 2014;272:524–532. doi: 10.1148/radiol.14140047.
    1. Khan Farhan H., Ahlberg Caitlyn D., Chow Christopher A., Shah Divya R., Koo Brian B. Iron, dopamine, genetics, and hormones in the pathophysiology of restless legs syndrome. Journal of Neurology. 2017;264(8):1634–1641. doi: 10.1007/s00415-017-8431-1.
    1. Ersche KD, et al. Disrupted iron regulation in the brain and periphery in cocaine addiction. Transl. Psychiatry. 2017;7:e1040. doi: 10.1038/tp.2016.271.
    1. Larsen B, Luna B. In vivo evidence of neurophysiological maturation of the human adolescent striatum. Dev. Cogn. Neurosci. 2015;12C:74–85. doi: 10.1016/j.dcn.2014.12.003.
    1. Peterson ET, et al. Distribution of brain iron accrual in adolescence: evidence from cross-sectional and longitudinal analysis. Hum. Brain Mapp. 2019;40:1480–1495. doi: 10.1002/hbm.24461.
    1. Haacke EM, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn. Reson. Imaging. 2005;23:1–25. doi: 10.1016/j.mri.2004.10.001.
    1. Haacke EM, et al. Correlation of change in R2* and phase with putative iron content in deep gray matter of healthy adults. J. Magn. Reson. Imaging. 2010;32:561–576. doi: 10.1002/jmri.22293.
    1. Sedlacik J, et al. Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3 T. NeuroImage. 2014;84:1032–1041. doi: 10.1016/j.neuroimage.2013.08.051.
    1. Graham JM, Paley MNJ, Grünewald RA, Hoggard N, Griffiths PD. Brain iron deposition in Parkinson’s disease imaged using the PRIME magnetic resonance sequence. Brain. 2000;123:2423–2431. doi: 10.1093/brain/123.12.2423.
    1. Aquino D, et al. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects1. Radiology. 2009;252:165–172. doi: 10.1148/radiol.2522081399.
    1. Kilbourn Michael R. PET and SPECT of Neurobiological Systems. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. Radioligands for Imaging Vesicular Monoamine Transporters; pp. 765–790.
    1. Hect JL, Daugherty AM, Hermez KM, Thomason ME. Developmental variation in regional brain iron and its relation to cognitive functions in childhood. Dev. Cogn. Neurosci. 2018;34:18–26. doi: 10.1016/j.dcn.2018.05.004.
    1. Wang J, et al. Maturational and aging effects on human brain apparent transverse relaxation. PloS ONE. 2012;7:e31907. doi: 10.1371/journal.pone.0031907.
    1. Seaman KL, et al. Differential regional decline in dopamine receptor availability across adulthood: Linear and nonlinear effects of age. Hum. Brain Mapp. 2019;40:3125–3138.
    1. Karrer TM, Josef AK, Mata R, Morris ED, Samanez-Larkin GR. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol. Aging. 2017;57:36–46. doi: 10.1016/j.neurobiolaging.2017.05.006.
    1. Huttenlocher PR. Synapse elimination and plasticity in developing human cerebral cortex. Am. J. Ment. Defic. 1984;88:488–496.
    1. Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J. Psychiatr. Res. 1983;17:319–334. doi: 10.1016/0022-3956(82)90038-3.
    1. Eshel N, Nelson EE, Blair RJ, Pine DS, Ernst M. Neural substrates of choice selection in adults and adolescents: development of the ventrolateral prefrontal and anterior cingulate cortices. Neuropsychologia. 2007;45:1270–1279. doi: 10.1016/j.neuropsychologia.2006.10.004.
    1. Teslovich T, et al. Adolescents let sufficient evidence accumulate before making a decision when large incentives are at stake. Dev. Sci. 2014;17:59–70. doi: 10.1111/desc.12092.
    1. Tamnes CK, et al. Brain Maturation In Adolescence And Young Adulthood: Regional Age-related Changes In Cortical Thickness And White Matter Volume And Microstructure. Cereb. Cortex. 2010;20:534–548. doi: 10.1093/cercor/bhp118.
    1. Koikkalainen J, et al. Shape variability of the human striatum—Effects of age and gender. NeuroImage. 2007;34:85–93. doi: 10.1016/j.neuroimage.2006.08.039.
    1. Dennison M, et al. Mapping subcortical brain maturation during adolescence: evidence of hemisphere- and sex-specific longitudinal changes. Dev. Sci. 2013;16:772–791. doi: 10.1111/desc.12057.
    1. Raznahan A, et al. Longitudinal four-dimensional mapping of subcortical anatomy in human development. PNAS. 2014;111:1592–1597. doi: 10.1073/pnas.1316911111.
    1. Walhovd K. B., Tamnes C. K., Bjornerud A., Due-Tonnessen P., Holland D., Dale A. M., Fjell A. M. Maturation of Cortico-Subcortical Structural Networks--Segregation and Overlap of Medial Temporal and Fronto-Striatal Systems in Development. Cerebral Cortex. 2014;25(7):1835–1841. doi: 10.1093/cercor/bht424.
    1. Larsen B, Verstynen TD, Yeh F-C, Luna B. Developmental changes in the integration of affective and cognitive corticostriatal pathways are associated with reward-driven behavior. Cereb. Cortex. 2018;28:2834–2845. doi: 10.1093/cercor/bhx162.
    1. van Duijvenvoorde ACK, Achterberg M, Braams BR, Peters S, Crone EA. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses. Neuroimage. 2016;124:409–420. doi: 10.1016/j.neuroimage.2015.04.069.
    1. Salvatore MF, Fisher B, Surgener SP, Gerhardt GA, Rouault T. Neurochemical investigations of dopamine neuronal systems in iron-regulatory protein 2 (IRP-2) knockout mice. Mol. Brain Res. 2005;139:341–347. doi: 10.1016/j.molbrainres.2005.06.002.
    1. Salvatore MF, Pruett BS. Dichotomy of tyrosine hydroxylase and dopamine regulation between somatodendritic and terminal field areas of nigrostriatal and mesoaccumbens pathways. PloS ONE. 2012;7:e29867. doi: 10.1371/journal.pone.0029867.
    1. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26. doi: 10.1038/npp.2009.129.
    1. Calipari ES, Huggins KN, Mathews TA, Jones SR. Conserved dorsal-ventral gradient of dopamine release and uptake rate in mice, rats and rhesus macaques. Neurochem. Int. 2012;61:986–991. doi: 10.1016/j.neuint.2012.07.008.
    1. Cragg SJ, Hille CJ, Greenfield SA. Functional domains in dorsal striatum of the nonhuman primate are defined by the dynamic behavior of dopamine. J. Neurosci. 2002;22:5705–5712. doi: 10.1523/JNEUROSCI.22-13-05705.2002.
    1. Leroux-Nicollet I, Costentin J. Comparison of the subregional distributions of the monoamine vesicular transporter and dopamine uptake complex in the rat striatum and changes during aging. J. Neural Transm. Gen. Sect. 1994;97:93–106. doi: 10.1007/BF01277946.
    1. Wu Q, Reith ME, Kuhar MJ, Carroll FI, Garris PA. Preferential increases in nucleus accumbens dopamine after systemic cocaine administration are caused by unique characteristics of dopamine neurotransmission. J. Neurosci. 2001;21:6338–6347. doi: 10.1523/JNEUROSCI.21-16-06338.2001.
    1. Funai AK, Fessler JA, Yeo DTB, Olafsson VT, Noll DC. Regularized field map estimation in MRI. IEEE Trans. Med Imaging. 2008;27:1484–1494. doi: 10.1109/TMI.2008.923956.
    1. Fessler, J. A. & Noll, D. C. model-based MR Image Reconstruction with Compensation for Through-plane Field Inhomogeneity. in Proc.2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro 920–923 (IEEE, 2007). 10.1109/ISBI.2007.357003.
    1. Hager W, Zhang H. The limited memory conjugate gradient method. SIAM J. Optim. 2013;23:2150–2168. doi: 10.1137/120898097.
    1. Speck O, Hennig J. Functional Imaging by I0- and T2* -parameter mapping using multi-image EPI. Magn. Reson. Med. 1998;40:243–248. doi: 10.1002/mrm.1910400210.
    1. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers Biomed. Res. 1996;29:162–173. doi: 10.1006/cbmr.1996.0014.
    1. Martinez D, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J. Cereb. Blood Flow. Metab. 2003;23:285–300. doi: 10.1097/01.WCB.0000048520.34839.1A.
    1. Izquierdo-Garcia D, et al. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J. Nucl. Med. 2014;55:1825–1830. doi: 10.2967/jnumed.113.136341.
    1. Ladefoged CN, et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage. 2017;147:346–359. doi: 10.1016/j.neuroimage.2016.12.010.
    1. Fischl B. FreeSurfer. Neuroimage. 2012;62:774–781. doi: 10.1016/j.neuroimage.2012.01.021.
    1. Normandin MD, Schiffer WK, Morris ED. A linear model for estimation of neurotransmitter response profiles from dynamic PET data. Neuroimage. 2012;59:2689–2699. doi: 10.1016/j.neuroimage.2011.07.002.
    1. Gunn R, Coello C, Searle G. Molecular Imaging And Kinetic Analysis Toolbox (MIAKAT)—a quantitative software package for the analysis of PET neuroimaging data. J. Nucl. Med. 2016;57:1928–1928.
    1. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. NeuroImage. 1996;4:153–158. doi: 10.1006/nimg.1996.0066.
    1. Nyberg L, et al. Dopamine D2 receptor availability is linked to hippocampal–caudate functional connectivity and episodic memory. PNAS. 2016;113:7918–7923. doi: 10.1073/pnas.1606309113.
    1. Berry AS, et al. Dopamine synthesis capacity is associated with D2/3 receptor binding but not dopamine release. Neuropsychopharmacol. 2018;43:1201–1211. doi: 10.1038/npp.2017.180.
    1. Black KJ, et al. Levodopa effects on [11C]raclopride binding in the resting human brain. F1000Res. 2015;4:23. doi: 10.12688/f1000research.5672.1.
    1. Alakurtti K, et al. Long-term test–retest reliability of striatal and extrastriatal dopamine D2/3 receptor binding: Study with [11C]Raclopride and High-Resolution PET. J. Cereb. Blood Flow. Metab. 2015;35:1199–1205. doi: 10.1038/jcbfm.2015.53.
    1. Yoder KK, Kareken DA, Morris ED. What were they thinking?: cognitive states may influence [11C]raclopride binding potential in the striatum. Neurosci. Lett. 2008;430:38–42. doi: 10.1016/j.neulet.2007.10.017.
    1. Yoder KK, et al. Test–retest variability of [11C]raclopride-binding potential in nontreatment-seeking alcoholics. Synapse. 2011;65:553–561. doi: 10.1002/syn.20874.
    1. Ichise M, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J. Cereb. Blood Flow. Metab. 2003;23:1096–1112. doi: 10.1097/.
    1. Chan GL, et al. Reproducibility studies with 11C-DTBZ, a monoamine vesicular transporter inhibitor in healthy human subjects. J. Nucl. Med. 1999;40:283–289.
    1. Tziortzi AC, et al. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. Neuroimage. 2011;54:264–277. doi: 10.1016/j.neuroimage.2010.06.044.
    1. Savalia NK, et al. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion. Hum. Brain Mapp. 2017;38:472–492. doi: 10.1002/hbm.23397.
    1. Kline, R. B. Principles and Practice of Structural Equation Modeling 4th edn. (Guilford Publications, 2015).

Source: PubMed

Подписаться