Immune Cell Infiltration and Identifying Genes of Prognostic Value in the Papillary Renal Cell Carcinoma Microenvironment by Bioinformatics Analysis

Ting Liu, Man Zhang, Deming Sun, Ting Liu, Man Zhang, Deming Sun

Abstract

Papillary renal cell carcinoma (PRCC) is one of the most common histological subtypes of renal cell carcinoma. Type 1 and type 2 PRCC are reported to be clinically and biologically distinct. However, little is known about immune infiltration and the expression patterns of immune-related genes in these two histologic subtypes, thereby limiting the development of immunotherapy for PRCC. Thus, we analyzed the expression of 22 immune cells in type 1 and type 2 PRCC tissues by combining The Cancer Genome Atlas (TCGA) database with the ESTIMATE and CIBERSORT algorithms. Subsequently, we extracted a list of differentially expressed genes associated with the immune microenvironment. Multichip mRNA microarray data sets for PRCC were downloaded from the Gene Expression Omnibus (GEO) to further validate our findings. We found that the immune scores and stromal scores were associated with overall survival in patients with type 2 PRCC rather than type 1 PRCC. Tumor-infiltrating M1 and M2 macrophages could predict the clinical outcome by reflecting the host's immune capacity against type 2 PRCC. Furthermore, CCL19/CCR7, CXCL12/CXCR4, and CCL20/CCR6 were shown to be potential new targets for tumor gene therapy in type 2 PRCC. Our findings provide valuable resources for improving immunotherapy for PRCC.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Copyright © 2020 Ting Liu et al.

Figures

Figure 1
Figure 1
Relationships between stromal/immune scores and prognosis in PRCC patients. (a) Effects of stromal scores and immune scores on overall survival rate in PRCC patients. Effects of stromal/immune scores on overall survival rate in (b) type 1 and (c) type 2 PRCC patients.
Figure 2
Figure 2
Relationship between stromal/immune scores and clinical characteristics. Associations between stromal/immune scores and distant metastasis, lymph nodes, clinical stage, and topography in (a) type 1 PRCC patients and (b) type 2 PRCC patients. M: distant metastasis; N: lymph node; T: topography.
Figure 3
Figure 3
Profiles of infiltrating immune cells in normal and PRCC tissues. (a) Heat map based on proportions of 22 immune cell types in normal, type 1, and type 2 PRCC tissues. (b) Violin plot showing differences in the expression of 22 immune cell types in normal (blue), type 1 (red), and type 2 (green) PRCC groups. (c) PCA analyses indicating group-biased clustering of immune cells from 76 GEO cases and 95 TCGA cases. (d) Correlation analysis based on 22 immune cell subpopulations. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.
Figure 4
Figure 4
Kaplan–Meier survival curves obtained to investigate the impacts of key immune cell types on overall survival in type 1 and type 2 PRCC patients. A P value < 0.05 was considered to indicate a significant difference based on the log-rank test.
Figure 5
Figure 5
Relationships between survival-related immune cells and clinicopathological characteristics in patients with type 2 PRCC. (a) Associations between M1 macrophages and clinical stage, topography, lymph nodes, and distant metastasis. (b) Associations between M2 macrophages and clinicopathological characteristics. T: topography; N: lymph node; M: distant metastasis.
Figure 6
Figure 6
Functional enrichment analysis and selection of key modules for DEGs in type 2 PRCC tissues. (a) Overlapping genes identified in TCGA and GEO databases. Significant (b) GO terms and (c) KEGG pathways for the upregulated genes identified in the high immune score group of type 2 PRCC. (d) Three meaningful modules in the PPI network. (e) Kaplan–Meier curves were prepared according to the high and low expression levels of core genes in type 2 PRCC.

References

    1. Chevarie-Davis M., Riazalhosseini Y., Arseneault M., et al. The morphologic and immunohistochemical spectrum of papillary renal Cell Carcinoma. The American Journal of Surgical Pathology. 2014;38(7):887–894. doi: 10.1097/pas.0000000000000247.
    1. Courthod G., Tucci M., Di Maio M., Scagliotti G. V. Papillary renal cell carcinoma: a review of the current therapeutic landscape. Critical Reviews in Oncology/Hematology. 2015;96(1):100–112. doi: 10.1016/j.critrevonc.2015.05.008.
    1. Hanahan D., Weinberg R. A. The hallmarks of cancer. Cell. 2000;100(1):57–70. doi: 10.1016/S0092-8674(00)81683-9.
    1. Hanahan D., Coussens L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–322. doi: 10.1016/j.ccr.2012.02.022.
    1. Cretu A., Brooks P. C. Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. Journal of Cellular Physiology. 2007;213(2):391–402. doi: 10.1002/jcp.21222.
    1. Kopfstein L., Christofori G. Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cellular and Molecular Life Sciences. 2006;63(4):449–468. doi: 10.1007/s00018-005-5296-8.
    1. Ladányi A. Prognostic and predictive significance of immune cells infiltrating cutaneous melanoma. Pigment Cell & Melanoma Research. 2015;28(5):490–500. doi: 10.1111/pcmr.12371.
    1. Seo J. S., Kim A., Shin J. Y., Kim Y. T. Comprehensive analysis of the tumor immune micro-environment in non-small cell lung cancer for efficacy of checkpoint inhibitor. Scientific reports. 2018;8(1, article 14576) doi: 10.1038/s41598-018-32855-8.
    1. Shiao S. L., Chu G. C. Y., Chung L. W. K. Regulation of prostate cancer progression by the tumor microenvironment. Cancer Letters. 2016;380(1):340–348. doi: 10.1016/j.canlet.2015.12.022.
    1. Ma X. J., Dahiya S., Richardson E., Erlander M., Sgroi D. C. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Research. 2009;11(1, article R7) doi: 10.1186/bcr2222.
    1. Yoshihara K., Shahmoradgoli M., Martínez E., et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications. 2013;4(1):1–11. doi: 10.1038/ncomms3612.
    1. Newman A. M., Liu C. L., Green M. R., et al. Robust enumeration of cell subsets from tissue expression profiles. Nature Methods. 2015;12(5):453–457. doi: 10.1038/nmeth.3337.
    1. Wen W. X., Soo J. S. S., Kwan P. Y., et al. Germline APOBEC3B deletion is associated with breast cancer risk in an Asian multi-ethnic cohort and with immune cell presentation. Breast Cancer Research. 2016;18(1):p. 56. doi: 10.1186/s13058-016-0717-1.
    1. Shah N., Wang P., Wongvipat J., et al. Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. eLife. 2017;6, article e27861 doi: 10.7554/eLife.27861.
    1. Fridman W. H., Zitvogel L., Sautès–Fridman C., Kroemer G. The immune contexture in cancer prognosis and treatment. Nature Reviews Clinical oncology. 2017;14(12):717–734. doi: 10.1038/nrclinonc.2017.101.
    1. Law C. W., Alhamdoosh M. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research. 2016;5, article 1408 doi: 10.12688/f1000research.9005.1.
    1. Leek J. T., Johnson W. E., Parker H. S., Jaffe A. E., Storey J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–883. doi: 10.1093/bioinformatics/bts034.
    1. Van Ravenzwaaij D., Cassey P., Brown S. D. A simple introduction to Markov chain Monte–Carlo sampling. Psychonomic Bulletin & Review. 2018;25(1):143–154. doi: 10.3758/s13423-016-1015-8.
    1. Shannon P., Markiel A., Ozier O., et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303.
    1. Mlecnik B., Bindea G., Pagès F., Galon J. Tumor immunosurveillance in human cancers. Cancer Metastasis Reviews. 2011;30(1):5–12. doi: 10.1007/s10555-011-9270-7.
    1. Chevrier S., Levine J. H., Zanotelli V., et al. An immune atlas of clear cell renal cell carcinoma. Cell. 2017;169(4):736–749.e18. doi: 10.1016/j.cell.2017.04.016.
    1. Matsushita H., Sato Y., Karasaki T., et al. Neoantigen load, antigen presentation machinery, and immune signatures determine prognosis in clear cell renal cell carcinoma. Cancer Immunology Research. 2016;4(5):463–471. doi: 10.1158/2326-6066.CIR-15-0225.
    1. McKay R. R., Bossé D., Xie W., et al. The clinical activity of PD-1/PD-L1 inhibitors in metastatic non–clear cell renal cell Carcinoma. Carcinoma. 2018;6(7):758–765. doi: 10.1158/2326-6066.CIR-17-0475.
    1. Zhang R. T., Bines S. D., Ruby C., Kaufman H. L. TroVax® vaccine therapy for renal cell carcinoma. Immunotherapy. 2012;4(1):27–42. doi: 10.2217/imt.11.160.
    1. Van den Eynde M., Mlecnik B., Bindea G., et al. The link between the multiverse of immune microenvironments in metastases and the survival of colorectal cancer patients. Cancer Cell. 2018;34(6):1012–1026.e3. doi: 10.1016/j.ccell.2018.11.003.
    1. Becht E., Giraldo N. A., Lacroix L., et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biology. 2016;17(1):p. 218. doi: 10.1186/s13059-016-1070-5.
    1. Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discovery. 2015;5(9):915–919. doi: 10.1158/-15-0563.
    1. Fridman W. H., Pagès F., Sautès-Fridman C., Galon J. The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer. 2012;12(4):298–306. doi: 10.1038/nrc3245.
    1. Lin Y., Xu J., Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. Journal of Hematology & Oncology. 2019;12(1):p. 76. doi: 10.1186/s13045-019-0760-3.
    1. Noy R., Pollard J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61. doi: 10.1016/j.immuni.2014.06.010.
    1. Emens L. A., Silverstein S. C., Khleif S., Marincola F. M., Galon J. Toward integrative cancer immunotherapy: targeting the tumor microenvironment. Medicine. 2012;70
    1. Angell H., Galon J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Current Opinion in Immunology. 2013;25(2):261–267. doi: 10.1016/j.coi.2013.03.004.
    1. Youngblood B., Hale J. S., Kissick H. T., et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature. 2017;552(7685):404–409. doi: 10.1038/nature25144.
    1. Xiao J., Xi W., Zhu Y., Wang H., Hu X., Guo J. Checkpoint molecule PD-1-assisted CD8+ T lymphocyte count in tumor microenvironment predicts overall survival of patients with metastatic renal cell carcinoma treated with tyrosine kinase inhibitors. Cancer Management and Research. 2018;10:3419–3431. doi: 10.2147/cmar.s172039.
    1. Chanmee T., Ontong P., Konno K., Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6(3):1670–1690. doi: 10.3390/cancers6031670.
    1. Jiang Z., Xu Y., Cai S. CXCL10 expression and prognostic significance in stage II and III colorectal cancer. Molecular Biology Reports. 2010;37(6):3029–3036. doi: 10.1007/s11033-009-9873-z.
    1. Curtis C., Shah S. P., Chin S. F., et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–352. doi: 10.1038/nature10983.
    1. Verhaak R. G. W., Tamayo P., Yang J. Y., et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. The Journal of Clinical Investigation. 2012;123(1) doi: 10.1172/JCI65833.
    1. Gkretsi V., Stylianopoulos T. Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Frontiers in Oncology. 2018;8:p. 145. doi: 10.3389/fonc.2018.00145.
    1. Friedl P., Mayor R. Tuning collective cell migration by cell-cell junction regulation. Cold Spring Harbor Perspectives in Biology. 2017;9(4, article a029199) doi: 10.1101/cshperspect.a029199.
    1. Fernandes J. V., Cobucci R. N. O., Jatobá C. A. N., de Medeiros Fernandes T. A. A., de Azevedo J. W. V., de Araújo J. M. G. The role of the mediators of inflammation in cancer development. Pathology & Oncology Research. 2015;21(3):527–534. doi: 10.1007/s12253-015-9913-z.
    1. Galon J., Costes A., Sanchez-Cabo F., et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–1964. doi: 10.1126/science.1129139.
    1. Janssens R., Struyf S., Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine & Growth Factor Reviews. 2018;44:51–68. doi: 10.1016/j.cytogfr.2018.10.004.
    1. Nazari A., Khorramdelazad H., Hassanshahi G. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. International Journal of Clinical Oncology. 2017;22(6):991–1000. doi: 10.1007/s10147-017-1187-x.
    1. Muscella A., Vetrugno C., Marsigliante S. CCL20 promotes migration and invasiveness of human cancerous breast epithelial cells in primary culture. Molecular Carcinogenesis. 2017;56(11):2461–2473. doi: 10.1002/mc.22693.
    1. Westermann J., Nguyen-Hoai T., Baldenhofer G., et al. CCL19 (ELC) as an adjuvant for DNA vaccination: induction of a TH1-type T-cell response and enhancement of antitumor immunity. Cancer Gene Therapy. 2007;14(6):523–532. doi: 10.1038/sj.cgt.7701042.
    1. Cheng S., Guo J., Yang Q., Yang X. Crk-like adapter protein regulates CCL19/CCR7-mediated epithelial-to-mesenchymal transition via ERK signaling pathway in epithelial ovarian carcinomas. Medical Oncology. 2015;32(3):p. 47. doi: 10.1007/s12032-015-0494-1.

Source: PubMed

Подписаться