Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O 2 content difference ratio as markers of resuscitation in patients with septic shock

Gustavo A Ospina-Tascón, Mauricio Umaña, William Bermúdez, Diego F Bautista-Rincón, Glenn Hernandez, Alejandro Bruhn, Marcela Granados, Blanca Salazar, César Arango-Dávila, Daniel De Backer, Gustavo A Ospina-Tascón, Mauricio Umaña, William Bermúdez, Diego F Bautista-Rincón, Glenn Hernandez, Alejandro Bruhn, Marcela Granados, Blanca Salazar, César Arango-Dávila, Daniel De Backer

Abstract

Purpose: To evaluate the prognostic value of the Cv-aCO2/Da-vO2 ratio combined with lactate levels during the early phases of resuscitation in septic shock.

Methods: Prospective observational study in a 60-bed mixed ICU. One hundred and thirty-five patients with septic shock were included. The resuscitation protocol targeted mean arterial pressure, pulse pressure variations or central venous pressure, mixed venous oxygen saturation, and lactate levels. Patients were classified into four groups according to lactate levels and Cv-aCO2/Da-vO2 ratio at 6 h of resuscitation (T6): group 1, lactate ≥2.0 mmol/L and Cv-aCO2/Da-vO2 >1.0; group 2, lactate ≥2.0 mmol/L and Cv-aCO2/Da-vO2 ≤1.0; group 3, lactate <2.0 mmol/L and Cv-aCO2/Da-vO2 >1.0; and group 4, lactate <2.0 mmol/L and Cv-aCO2/Da-vO2 ≤1.0.

Results: Combination of hyperlactatemia and high Cv-aCO2/Da-vO2 ratio was associated with the worst SOFA scores and lower survival rates at day 28 [log rank (Mantel-Cox) = 31.39, p < 0.0001]. Normalization of both variables was associated with the best outcomes. Patients with a high Cv-aCO2/Da-vO2 ratio and lactate <2.0 mmol/L had similar outcomes to hyperlactatemic patients with low Cv-aCO2/Da-vO2 ratio. The multivariate analysis revealed that Cv-aCO2/Da-vO2 ratio at both T0 (RR 3.85; 95 % CI 1.60-9.27) and T6 (RR 3.97; 95 % CI 1.54-10.24) was an independent predictor for mortality at day 28, as well as lactate levels at T6 (RR 1.58; 95 % CI 1.13-2.22).

Conclusion: Complementing lactate assessment with Cv-aCO2/Da-vO2 ratio during early stages of resuscitation of septic shock can better identify patients at high risk of adverse outcomes. The Cv-aCO2/Da-vO2 ratio may become a potential resuscitation goal in patients with septic shock.

Figures

Fig. 1
Fig. 1
Sequential Organ Failure Assessment (SOFA) scores at day 3 for predefined groups. Data presented as median (percentiles). Patients were separated into four groups according to lactate and Cv-aCO2/Da-vO2 ratio measured after the first 6 h of resuscitation: group 1, lactate ≥2.0 mmol/L and Cv-aCO2/Da-vO2 ratio >1.0; group 2, lactate ≥2.0 mmol/L and Cv-aCO2/Da-vO2 ratio ≤1.0; group 3, lactate <2.0 mmol/L and Cv-aCO2/Da-vO2 ratio >1.0; and group 4, lactate <2.0 mmol/L and Cv-aCO2/Da-vO2 ratio ≤1.0. Kruskal–Wallis one-way ANOVA, p < 0.001. **p < 0.01 by Tukey–Kramer showing differences between groups 1 vs. 3 and 1 vs. 4
Fig. 2
Fig. 2
Survival probabilities up to day 28 according to lactate and Cv-aCO2/Da-vO2 after 6 h of resuscitation. Log rank (Mantel–Cox) = 31.39, p < 0.0001. Group 1, lactate ≥2.0 mmol/L and Cv-aCO2/Da-vO2 ratio >1.0; group 2, lactate ≥2.0 mmol/L and Cv-aCO2/Da-vO2 ratio ≤1.0; group 3, lactate <2.0 mmol/L and Cv-aCO2/Da-vO2 ratio >1.0; and group 4, lactate <2.0 mmol/L and Cv-aCO2/Da-vO2 ratio ≤1.0
Fig. 3
Fig. 3
Receiver operating characteristics (ROC) curves for prediction of mortality at day 28 for models including or not Cv-aCO2/Da-vO2 ratio. The “large model” included Cv-aCO2/Da-vO2 + lactate levels. The “short model” included lactate levels but not Cv-aCO2/Da-vO2. Both models also included oxygen consumption (VO2), oxygen delivery (DO2), mixed-venous oxygen saturation (SvO2), cardiac index, APACHE II, age, time before T0, gender, fluids administered, norepinephrine dose, and mean arterial pressure. Likelihood ratio test, χ2 = 17.81, p < 0.001. Differences between AUCs, C statistic, χ2 4.52, p = 0.03

References

    1. Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369:1726–1734. doi: 10.1056/NEJMra1208943.
    1. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–1815. doi: 10.1007/s00134-014-3525-z.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Group EG-DTC Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Trzeciak S, Dellinger RP, Abate NL, Cowan RM, Stauss M, Kilgannon JH, Zanotti S, Parrillo JE. Translating research to clinical practice: a 1-year experience with implementing early goal-directed therapy for septic shock in the emergency department. Chest. 2006;129:225–232. doi: 10.1378/chest.129.2.225.
    1. Jones AE, Focht A, Horton JM, Kline JA. Prospective external validation of the clinical effectiveness of an emergency department-based early goal-directed therapy protocol for severe sepsis and septic shock. Chest. 2007;132:425–432. doi: 10.1378/chest.07-0234.
    1. Shapiro NI, Howell MD, Talmor D, Lahey D, Ngo L, Buras J, Wolfe RE, Weiss JW, Lisbon A. Implementation and outcomes of the Multiple Urgent Sepsis Therapies (MUST) protocol. Crit Care Med. 2006;34:1025–1032. doi: 10.1097/01.CCM.0000206104.18647.A8.
    1. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R, Subgroup SSCGCiTP Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228. doi: 10.1007/s00134-012-2769-8.
    1. Bellomo R, Reade MC, Warrillow SJ. The pursuit of a high central venous oxygen saturation in sepsis: growing concerns. Crit Care. 2008;12:130. doi: 10.1186/cc6841.
    1. Perel A. Bench-to-bedside review: the initial hemodynamic resuscitation of the septic patient according to Surviving Sepsis Campaign guidelines—does one size fit all? Crit Care. 2008;12:223. doi: 10.1186/cc6979.
    1. Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC, Investigators P. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–1693. doi: 10.1056/NEJMoa1401602.
    1. van Beest PA, Hofstra JJ, Schultz MJ, Boerma EC, Spronk PE, Kuiper MA. The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in the Netherlands. Crit Care. 2008;12:R33. doi: 10.1186/cc6811.
    1. Puskarich MA, Trzeciak S, Shapiro NI, Heffner AC, Kline JA, Jones AE, Emergency Medicine Shock Research Network (EMSHOCKNET) Outcomes of patients undergoing early sepsis resuscitation for cryptic shock compared with overt shock. Resuscitation. 2011;82:1289–1293. doi: 10.1016/j.resuscitation.2011.06.015.
    1. Shapiro NI, Howell MD, Talmor D, Nathanson LA, Lisbon A, Wolfe RE, Weiss JW. Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med. 2005;45:524–528. doi: 10.1016/j.annemergmed.2004.12.006.
    1. Puskarich MA, Trzeciak S, Shapiro NI, Albers AB, Heffner AC, Kline JA, Jones AE. Whole blood lactate kinetics in patients undergoing quantitative resuscitation for severe sepsis and septic shock. Chest. 2013;143:1548–1553. doi: 10.1378/chest.12-0878.
    1. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, Willemsen SP, Bakker J, group Ls Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–761. doi: 10.1164/rccm.200912-1918OC.
    1. Nguyen HB, Kuan WS, Batech M, Shrikhande P, Mahadevan M, Li CH, Ray S, Dengel A, Investigators AANtRSc Outcome effectiveness of the severe sepsis resuscitation bundle with addition of lactate clearance as a bundle item: a multi-national evaluation. Crit Care. 2011;15:R229. doi: 10.1186/cc10469.
    1. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA, Investigators EMSRNE. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739–746. doi: 10.1001/jama.2010.158.
    1. van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous-arterial PCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013;39:1034–1039. doi: 10.1007/s00134-013-2888-x.
    1. Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: please “mind the gap”! Intensive Care Med. 2013;39:1653–1655. doi: 10.1007/s00134-013-2998-5.
    1. Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, Tafur JD, Gutiérrez A, García AF, Bermúdez W, Granados M, Arango-Dávila C, Hernández G. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care. 2013;17:R294. doi: 10.1186/cc13160.
    1. Jakob SM, Kosonen P, Ruokonen E, Parviainen I, Takala J. The Haldane effect—an alternative explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth. 1999;83:740–746. doi: 10.1093/bja/83.5.740.
    1. Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, Teboul JL. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28:272–277. doi: 10.1007/s00134-002-1215-8.
    1. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–332. doi: 10.1016/j.ajic.2008.03.002.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G, SCCM, ESICM, ACCP, ATS, SIS 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26:1793–1800. doi: 10.1097/00003246-199811000-00016.
    1. Douglas AR, Jones NL, Reed JW. Calculation of whole blood CO2 content. J Appl Physiol. 1985;65:473–477.
    1. Austin WH, Lacombe E, Rand PW, Chatterjee M. Solubility of carbon dioxide in serum from 15 to 38 C. J Appl Physiol. 1963;18:301–304.
    1. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845. doi: 10.2307/2531595.
    1. Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg. 1991;73:576–582.
    1. Dubin A, Murias G, Estenssoro E, Canales H, Sottile P, Badie J, Barán M, Rossi S, Laporte M, Pálizas F, Giampieri J, Mediavilla D, Vacca E, Botta D. End-tidal CO2 pressure determinants during hemorrhagic shock. Intensive Care Med. 2000;26:1619–1623. doi: 10.1007/s001340000669.
    1. James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999;354:505–508. doi: 10.1016/S0140-6736(98)91132-1.
    1. Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, Grimaud D. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157:1021–1026. doi: 10.1164/ajrccm.157.4.9705037.
    1. Severin PN, Uhing MR, Beno DW, Kimura RE. Endotoxin-induced hyperlactatemia results from decreased lactate clearance in hemodynamically stable rats. Crit Care Med. 2002;30:2509–2514. doi: 10.1097/00003246-200211000-00017.
    1. De Backer D, Creteur J, Zhang H, Norrenberg M, Vincent JL. Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med. 1997;156:1099–1104. doi: 10.1164/ajrccm.156.4.9701048.
    1. Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89:1317–1321.
    1. Nevière R, Chagnon JL, Teboul JL, Vallet B, Wattel F. Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med. 2002;30:379–384. doi: 10.1097/00003246-200202000-00019.
    1. Rimachi R, Bruzzi de Carvahlo F, Orellano-Jimenez C, Cotton F, Vincent JL, De Backer D. Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock. Anaesth Intensive Care. 2012;40:427–432.
    1. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, Persichini R, Anguel N, Richard C, Teboul JL. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41:1412–1420. doi: 10.1097/CCM.0b013e318275cece.
    1. Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, Samii K, Fourcade O, Genestal M. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34:2218–2225. doi: 10.1007/s00134-008-1199-0.
    1. Hurley R, Mythen MG. The Haldane effect—an explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth. 2000;85:167–169.
    1. Dubin A, Estenssoro E, Murias G, Pozo MO, Sottile JP, Barán M, Piacentini E, Canales HS, Etcheverry G. Intramucosal-arterial PCO2 gradient does not reflect intestinal dysoxia in anemic hypoxia. J Trauma. 2004;57:1211–1217. doi: 10.1097/01.TA.0000107182.43213.4B.

Source: PubMed

Подписаться