Cost-utility of ferric carboxymaltose (Ferinject®) for iron-deficiency anemia patients with chronic heart failure in South Korea

Eun-A Lim, Hyun-Soon Sohn, Haeyoung Lee, Sang-Eun Choi, Eun-A Lim, Hyun-Soon Sohn, Haeyoung Lee, Sang-Eun Choi

Abstract

Background: Iron-deficiency anemia (IDA) is prevalent in patients with advanced chronic heart failure (CHF). It affects the patients' overall physical condition and is suggested as a strong outcome predictor in CHF. Recent clinical trials suggested that intravenous iron supplementation improves CHF functional status and quality of life. The aim of this study was to assess the cost-effectiveness of ferric carboxymaltose(FCM) in CHF patients with IDA.

Methods: Ferric carboxymaltose, an intravenous iron preparation, was compared with placebo. The target population comprised CHF patients with IDA in hospital and outpatient care settings. We conducted this study from the Korean healthcare payers' perspective with a time horizon of 24 weeks. One clinical trial provided the clinical outcomes of ferric carboxymaltose therapy. The improvement rates of the New York Heart Association (NYHA) functional class in the placebo and ferric carboxymaltose groups were used to estimate effectiveness in the base-case model. We also conducted a scenario 2 analysis using quality of life investigated in the clinical trial. A panel survey was conducted to obtain the ratio of healthcare resource use based on NYHA class in Korea. Cost-effectiveness was expressed as incremental cost (US dollars) per quality-adjusted life-year (QALY) gained.

Results: In the base-case analysis, the incremental cost-effectiveness ratio (ICER) of ferric carboxymaltose compared with placebo was $22,192 (₩25,010,451) per QALY gained. The sensitivity analysis showed robust results, with the ICERs of ferric carboxymaltose ranging from $5,156 to $29,796 per QALY gained. In the scenario 2 analysis, ICER decreased to $12,598 (₩14,198,501) per QALY gained.

Conclusions: Iron repletion with ferric carboxymaltose for IDA in CHF patients was cost-effective compared with placebo.

Keywords: Chronic heart failure; Cost utility; Cost-effectiveness; Iron-deficiency anemia; New York heart association (NYHA) functional class.

Figures

Figure 1
Figure 1
Model diagram. A cost-effectiveness model was constructed according to the changes in NYHA class from baseline to 24 weeks in the placebo and FCM groups. The key assumptions of the model were as follows: 1) the effect of the intervention was immediate and lasted throughout 24 weeks in the placebo and FCM groups, and 2) no difference in safety was observed between the 2 groups.

References

    1. Ngo K, Kotecha D, Walters JA, Manzano L, Palazzuoli A, van Veldhuisen DJ, Flather M. Erythropoiesis-stimulating agents for anaemia in chronic heart failure patients. Cochrane Database Syst Rev. 2010;20(1) CD007613.
    1. Heo JH, Kim HS, Jang BJ, Shin JG, Yang DH, Park HS, Jo YK, Chae SC, Jun JE, Park WH. Anemia is associated with higher mortality in severe heart failure. Korean Circ J. 2005;35(10):773–778. Korean.
    1. Silverberg DS, Wexler D, Blum M, Keren G, Sheps D, Leibovitch E, Brosh D, Laniado S, Schwartz D, Yachnin T, Shapira I, Gavish D, Baruch R, Koifman B, Kaplan C, Steinbruch S, Iaina A. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations. J Am Coll Cardiol. 2000;35(7):1737–1744.
    1. Nanas JN, Matsouka C, Karageorgopoulos D, Leonti A, Tsolakis E, Drakos SG, Tsagalou EP, Maroulidis GD, Alexopoulos GP, Kanakakis JE, Anastasiou-Nana MI. Etiology of anemia in patients with advanced heart failure. J Am Coll Cardiol. 2006;48(12):2485–2489.
    1. Kalra PR, Anagnostopoulos C, Bolger AP. The regulation and measurement of plasma volume in heart failure. J Am Coll Cardiol. 2002;39:1901–1908.
    1. Anand IS, Chandrashekhar Y, Ferrari R. Pathogenesis of oedema in chronic anaemia: studies of body water and sodium, renal function, haemodynamic variables, and plasma hormones. Br Heart J. 1993;70:357–362.
    1. Mozaffarian D, Nye R, Levy WC. Anemia predicts mortality in severe heart failure. J Am Coll Cardiol. 2003;41:1933–1939.
    1. Komajda M, Anker SD, Charlesworth A, Okonko D, Metra M, Di Lenarda A, Remme W, Moullet C, Swedberg K, Cleland JG, Poole-Wilson PA. The impact of new onset anaemia on morbidity and mortality in chronic heart failure: results from COMET. Eur Heart J. 2006;27(12):1440–1446.
    1. Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, Borodulin-Nadzieja L, Banasiak W, Polonski L, Filippatos G, McMurray JJ, Anker SD, Ponikowski P. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J. 2010;31(15):1872–1880.
    1. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Strömberg A, van Veldhuisen DJ, Atar D, Hoes AW, Keren A, Mebazaa A, Nieminen M, Priori SG, Swedberg K. ESC Committee for Practice Guidelines (CPG) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European society of cardiology. Developed in collaboration with the heart failure association of the ESC (HFA) and endorsed by the European society of intensive care medicine (ESICM) Eur Heart J. 2008;29:2388–2442.
    1. Haas JD, Brownlie T IV. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr. 2001;131:676S–690S.
    1. Klip IT, Comin-Colet J, Voors AA, Ponikowski P, Enjuanes C, Banasiak W, Lok DJ, Rosentryt P, Torrens A, Polonski L, van Veldhuisen DJ, van der Meer P, Jankowska EA. Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J. 2013;165(4):575–582.
    1. Opasich C, Cazzola M, Scelsi L, De Feo S, Bosimini E, Lagioia R, Febo O, Ferrari R, Fucili A, Moratti R, Tramarin R, Tavazzi L. Blunted erythropoietin production and defective iron supply for erythropoiesis as major causes of anaemia in patients with chronic heart failure. Eur Heart J. 2005;26:2232–2237.
    1. Ezekowitz JA, McAlister FA, Armstrong PW. Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12,065 patients with new-onset heart failure. Circulation. 2003;107:223–225.
    1. Okonko DO, Grzeslo A, Witkowski T, Mandal AK, Slater RM, Roughton M, Foldes G, Thum T, Majda J, Banasiak W, Missouris CG, Poole-Wilson PA, Anker SD, Ponikowski P. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemc patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial. J Am Coll Cardiol. 2008;51:103–112.
    1. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Lüscher TF, Bart B, Banasiak W, Niegowska J, Kirwan BA, Mori C, von Eisenhart RB, Pocock SJ, Poole-Wilson PA, Ponikowski P. FAIR-HF Trial Investigators. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436–2448.
    1. Comin-Colet J, Lainscak M, Dickstein K, Filippatos GS, Johnson P, Lüscher TF, Mori C, Willenheimer R, Ponikowski P, Anker SD. The effect of intravenous ferric carboxymaltose on health-related quality of life in patients with chronic heart failure and iron deficiency: a subanalysis of the FAIR-HF study. Eur Heart J. 2013;34(1):30–38.
    1. Beck-da-Silva L, Piardi D, Soder S, Rohde LE, Pereira-Barretto AC, de Albuquerque D, Bocchi E, Vilas-Boas F, Moura LZ, Montera MW, Rassi S, Clausell N. IRON-HF study: a randomized trial to assess the effects of iron in heart failure patients with anemia. Int J Cardiol. 2013;168(4):3439–3442.
    1. Gutzwiller FS, Schwenkglenks M, Blank PR, Braunhofer PG, Mori C, Szucs TD, Ponikowski P, Anker SD. Health economic assessment of ferric carboxymaltose in patients with iron deficiency and chronic heart failure based on the FAIR-HF trial: an analysis for the UK. Eur J Heart Fail. 2012;14(7):782–790.
    1. Health Insurance Review and Assessment Service (HIRA), National Health Insurance Service (NHIS) 2011 national health insurance statistical yearbook. 2012. .
    1. Fox M, Mealing S, Anderson R, Dean J, Stein K, Price A, Taylor RS. The clinical effectiveness and cost-effectiveness of cardiac resynchronisation (biventricular pacing) for heart failure: systematic review and economic model. Health Technol Assess. 2007;11(47):iii–iv. ix-248.
    1. Kirsch J, McGuire A. Establishing health state valuations for disease specific states: an example from heart disease. Health Econ. 2000;9:149–158.
    1. Lewis EF, Johnson PA, Johnson W, Collins C, Griffin L, Stevenson LW. Preferences for quality of life or survival expressed by patients with heart failure. J Heart Lung Transplant. 2001;20:1016–1024.
    1. Calvert MJ, Freemantle N, Yao G, Cleland JG, Billingham L, Daubert JC, Bryan S. CARE-HF Investigators. Cost-effectiveness of cardiac resynchronization therapy: results from the CARE-HF trial. Eur Heart J. 2005;26:2681–2688.
    1. Göhler A, Geisler BP, Manne JM, Kosiborod M, Zhang Z, Weintraub WS, Spertus JA, Gazelle GS, Siebert U, Cohen DJ. Utility estimates for decision-analytic modeling in chronic heart failure: health states based on New York heart association classes and number of rehospitalizations. Value Health. 2009;12:185–187.
    1. Calvert MJ, Freemantle N, Cleland JG. The impact of chronic heart failure on health-related quality of life data acquired in the baseline phase of the CARE-HF study. Eur J Heart Fail. 2005;7:243–251.
    1. Berry C, Murdoch DR, McMurray JJ. Economics of chronic heart failure. Eur J Heart Fail. 2001;3(3):283–291.
    1. Ahn J, Kim Y, Shin S, Park J. Asian Study on the Value for a QALY: Korean Results. Seoul: National Evidence-based Healthcare Collaborating Agency (NECA), NECA-C-12-001; 2013.

Source: PubMed

Подписаться