Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer

Susan Costantini, Francesca Capone, Andrea Polo, Palmina Bagnara, Alfredo Budillon, Susan Costantini, Francesca Capone, Andrea Polo, Palmina Bagnara, Alfredo Budillon

Abstract

Valosin-containing protein (VCP)/p97, a member of the AAA+ ATPase family, is a molecular chaperone recruited to the endoplasmic reticulum (ER) membrane by binding to membrane adapters (nuclear protein localization protein 4 (NPL4), p47 and ubiquitin regulatory X (UBX) domain-containing protein 1 (UBXD1)), where it is involved in ER-associated protein degradation (ERAD). However, VCP/p97 interacts with many cofactors to participate in different cellular processes that are critical for cancer cell survival and aggressiveness. Indeed, VCP/p97 is reported to be overexpressed in many cancer types and is considered a potential cancer biomarker and therapeutic target. This review summarizes the role of VCP/p97 in different cancers and the advances in the discovery of small-molecule inhibitors with therapeutic potential, focusing on the challenges associated with cancer-related VCP mutations in the mechanisms of resistance to inhibitors.

Keywords: AAA+ ATPase; CB-5083; VCP; cancer; p97; prognostic biomarker.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Molecular structures (PDB code: 5FTK chain A: 21–763 residues) of the VCP monomer (A) and hexamer (B). The N-terminal region is shown in green, N-D1 linker in black, D1 domain in magenta, D1-D2 linker in blue and D2 in cyan. ADP molecules are presented as red spheres.
Figure 2
Figure 2
Protein−protein interaction network obtained using the Ingenuity Pathway tool showing the role of VCP as a hub node in cyan and all the correlated proteins in yellow symbols.
Figure 3
Figure 3
Biological functions of VCP/p97.

References

    1. Moir D., Stewart S.E., Osmond B.C., Botstein D. Cold-sensitive cell-division-cycle mutants of yeast: Isolation, properties, and pseudoreversion studies. Genetics. 1982;100:547–563. doi: 10.1093/genetics/100.4.547.
    1. Meyer H., Weihl C.C. The VCP/p97 system at a glance: Connecting cellular function to disease pathogenesis. J. Cell Sci. 2014;127:3877–3883. doi: 10.1242/jcs.093831.
    1. Xia D., Tang W.K., Ye Y. Structure and function of the AAA+ ATPase p97/Cdc48p. Gene. 2016;583:64–77. doi: 10.1016/j.gene.2016.02.042.
    1. Zhong X., Shen Y., Ballar P., Apostolou A., Agami R., Fang S. AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J. Biol. Chem. 2004;279:45676–45684. doi: 10.1074/jbc.M409034200.
    1. Tang W.K., Xia D. Role of the D1-D2 Linker of Human VCP/p97 in the Asymmetry and ATPase Activity of the D1-domain. Sci. Rep. 2016;6:20037. doi: 10.1038/srep20037.
    1. Tang W.K., Xia D. Mutations in the Human AAA(+) Chaperone p97 and Related Diseases. Front. Mol. Biosci. 2016;3:79. doi: 10.3389/fmolb.2016.00079.
    1. Shih Y.T., Hsueh Y.P. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation. Nat. Commun. 2016;7:11020. doi: 10.1038/ncomms11020.
    1. Meyer H., Bug M., Bremer S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 2012;14:117–123. doi: 10.1038/ncb2407.
    1. Buchberger A., Schindelin H., Hanzelmann P. Control of p97 func-tion by cofactor binding. FEBS Lett. 2015;589:2578–2589. doi: 10.1016/j.febslet.2015.08.028.
    1. Sun X., Qiu H. Valosin-Containing Protein, a Calcium-Associated ATPase Protein, in Endoplasmic Reticulum and Mitochondrial Function and Its Implications for Diseases. Int. J. Mol. Sci. 2020;21:3842. doi: 10.3390/ijms21113842.
    1. Hänzelmann P., Schindelin H. The interplay of cofactor interactions and post-translational modifications in the regulation of the AAA+ ATPase p97. Front. Mol. Biosci. 2017;4:21. doi: 10.3389/fmolb.2017.00021.
    1. Arumughan A., Roske Y., Barth C., Forero L.L., Bravo-Rodriguez K., Redel A., Kostova S., McShane E., Opitz R., Faelber K., et al. Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers. Nat. Commun. 2016;7:13047. doi: 10.1038/ncomms13047.
    1. Lee J.H., Park K.J., Jang J.K., Jeon Y.H., Ko K.Y., Kwon J.H., Lee S.R., Kim I.Y. Selenoprotein S-dependent Selenoprotein K Binding to p97(VCP) Protein Is Essential for Endoplasmic Reticulum-associated Degradation. J. Biol. Chem. 2015;290:29941–29952. doi: 10.1074/jbc.M115.680215.
    1. Tang D., Mar K., Warren G., Wang Y. Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined re-constitution assay. J. Biol. Chem. 2008;283:6085–6094. doi: 10.1074/jbc.M707715200.
    1. He J., Zhu Q., Wani G., Wani A.A. UV-induced proteolysis of RNA polymerase II is mediated by VCP/p97 segregase and timely orchestration by Cockayne syndrome B protein. Oncotarget. 2017;8:11004–11019. doi: 10.18632/oncotarget.14205.
    1. Lafon A., Taranum S., Pietrocola F., Dingli F., Loew D., Brahma S., Bartholomew B., Papamichos-Chronakis M. INO80 Chromatin Remodeler Facilitates Release of RNA Polymerase II from Chromatin for Ubiquitin-Mediated Proteasomal Degradation. Mol. Cell. 2015;60:784–796. doi: 10.1016/j.molcel.2015.10.028.
    1. Van den Boom J., Wolf M., Weimann L., Schulze N., Li F., Kaschani F., Riemer A., Zierhut C., Kaiser M., Iliakis G., et al. VCP/p97 Extracts Sterically Trapped Ku70/80 Rings from DNA in Double-Strand Break Repair. Mol. Cell. 2016;64:189–198. doi: 10.1016/j.molcel.2016.08.037.
    1. Chia W.S., Chia D.X., Rao F., Nun S.B., Shochat S.G. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain. PLoS ONE. 2012;7:e50490. doi: 10.1371/journal.pone.0050490.
    1. Ballar P., Pabuccuoglu A., Kose F.A. Different p97/VCP complexes function in retrotranslocation step of mammalian ER-associated degradation (ERAD) Int. J. Biochem. Cell Biol. 2011;43:613–621. doi: 10.1016/j.biocel.2010.12.021.
    1. Heubes S., Stemmann O. The AAA-ATPase p97-Ufd1-Npl4 is re-quired for ERAD but not for spindle disassembly in Xenopus egg extracts. J. Cell Sci. 2007;120:1325–1329. doi: 10.1242/jcs.006924.
    1. Nowis D., McConnell E., Wojcik C. Destabilization of the VCP-Ufd1-Npl4 complex is associated with decreased levels of ERAD substrates. Exp. Cell Res. 2006;312:2921–2932. doi: 10.1016/j.yexcr.2006.05.013.
    1. Van den Boom J., Meyer H. VCP/p97-Mediated Unfolding as a Principle in Protein Homeostasis and Signaling. Mol. Cell. 2018;69:182–194. doi: 10.1016/j.molcel.2017.10.028.
    1. Meerang M., Ritz D., Paliwal S., Garajova Z., Bosshard M., Mailand N., Janscak P., Hübscher U., Meyer H., Ramadan K. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nat. Cell Biol. 2011;13:1376–1382. doi: 10.1038/ncb2367.
    1. Papadopoulos C., Kirchner P., Bug M., Grum D., Koerver L., Schulze N., Poehler R., Dressler A., Fengler S., Arhzaouy K., et al. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J. 2017;36:135–150. doi: 10.15252/embj.201695148.
    1. Fielden J., Wiseman K., Torrecilla I., Li S., Hume S., Chiang S.C., Ruggiano A., Narayan Singh A., Freire R., Hassanieh S., et al. TEX264 coordinates p97- and SPRTN-mediated resolution of topoisomerase 1-DNA adducts. Nat. Commun. 2020;11:1274. doi: 10.1038/s41467-020-15000-w.
    1. Yamanaka K., Sasagawa Y., Ogura T. Recent advances in p97/VCP/Cdc48 cellular functions. Biochim. Biophys. Acta. 2012;1823:130–137. doi: 10.1016/j.bbamcr.2011.07.001.
    1. Yeo B.K., Yu S.-W. Valosin-containing protein (VCP): Structure, functions, and implications in neurodegenerative diseases. Anim. Cells Syst. 2016;20:303–309. doi: 10.1080/19768354.2016.1259181.
    1. Ye Y., Tang W.K., Zhang T., Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. Front. Mol. Biosci. 2017;4:39. doi: 10.3389/fmolb.2017.00039.
    1. Christianson J.C., Ye Y. Cleaning up in the endoplasmic reticulum: Ubiquitin in charge. Nat. Struct. Mol. Biol. 2014;21:325–335. doi: 10.1038/nsmb.2793.
    1. Baldridge R.D., Rapoport T.A. Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. Cell. 2016;166:394–407. doi: 10.1016/j.cell.2016.05.048.
    1. Neuber O., Jarosch E., Volkwein C., Walter J., Sommer T. Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat. Cell Biol. 2005;7:993–998. doi: 10.1038/ncb1298.
    1. Garza R.M., Sato B.K., Hampton R.Y. In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. J. Biol. Chem. 2009;284:14710–14722. doi: 10.1074/jbc.M809607200.
    1. Zhang T., Ye Y. The final moments of misfolded proteins en route to the proteasome. DNA Cell Biol. 2014;33:477–483. doi: 10.1089/dna.2014.2452.
    1. Hemion C., Flammer J., Neutzner A. Quality control of oxidatively damaged mitochondrial proteins is mediated by p97 and the proteasome. Free Radic. Biol. Med. 2014;75:121–128. doi: 10.1016/j.freeradbiomed.2014.07.016.
    1. Kimura Y., Fukushi J., Hori S., Matsuda N., Okatsu K., Kakiyama Y., Kawawaki J., Kakizuka A., Tanaka K. Different dynamic movements of wild-type and pathogenic VCPs and their cofactors to damaged mitochondria in a Parkin-mediated mitochondrial quality control system. Genes Cells. 2013;18:1131–1143. doi: 10.1111/gtc.12103.
    1. Heo J.M., Nielson J.R., Dephoure N., Gygi S.P., Rutter J. Intramolecular interactions control Vms1 translocation to damaged mitochondria. Mol. Biol. Cell. 2013;24:1263–1273. doi: 10.1091/mbc.e13-02-0072.
    1. Defenouillère Q., Yao Y., Mouaikel J., Namane A., Galopier A., Decourty L., Doyen A., Malabat C., Saveanu C., Jacquier A., et al. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc. Natl. Acad. Sci. USA. 2013;110:5046–5051. doi: 10.1073/pnas.1221724110.
    1. Brandman O., Stewart-Ornstein J., Wong D., Larson A., Williams C.C., Li G.W., Zhou S., King D., Shen P.S., Weibezahn J., et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell. 2012;151:1042–1054. doi: 10.1016/j.cell.2012.10.044.
    1. Mouysset J., Deichsel A., Moser S., Hoege C., Hyman A.A., Gartner A., Hoppe T. Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication. Proc. Natl. Acad. Sci. USA. 2008;105:12879–12884. doi: 10.1073/pnas.0805944105.
    1. Dai R.M., Li C.C. Valosin-containing protein isamulti-ubiquitinchain-targeting factor required in ubiquitin-proteasome degradation. Nat. Cell Biol. 2001;3:740–744. doi: 10.1038/35087056.
    1. Ikai N., Yanagida M. Cdc48 is required for the stability of Cut1/separase in mitotic anaphase. J. Struct. Biol. 2006;156:50–61. doi: 10.1016/j.jsb.2006.04.003.
    1. Wojcik C., Yano M., DeMartino G.N. RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. J. Cell Sci. 2004;117:281–292. doi: 10.1242/jcs.00841.
    1. Ramadan K., Bruderer R., Spiga F.M., Popp O., Baur T., Gotta M., Meyer H.H. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature. 2007;450:1258–1262. doi: 10.1038/nature06388.
    1. Sasagawa Y., Higashitani A., Urano T., Ogura T., Yamanaka K. CDC-48/p97 is required for proper meiotic chromosome segregation via controlling AIR-2/Aurora B kinase localization in Caenorhabditis elegans. J. Struct. Biol. 2012;179:104–111. doi: 10.1016/j.jsb.2012.06.009.
    1. Madeo F., Schlauer J., Zischka H., Mecke D., Frohlich K.U. Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of Cdc48p. Mol. Biol. Cell. 1998;9:131–141. doi: 10.1091/mbc.9.1.131.
    1. Braun S., Matuschewski K., Rape M., Thoms S., Jentsch S. Role of the ubiquitin-selective CDC48(UFD1/NPL4)chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 2002;21:615–621. doi: 10.1093/emboj/21.4.615.
    1. Shirogane T., Fukada T., Muller J.M., Shima D.T., Hibi M., Hirano T. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity. 1999;11:709–719. doi: 10.1016/S1074-7613(00)80145-4.
    1. Tresse E., Salomons F.A., Vesa J., Bott L.C., Kimonis V., Yao T.P., Dantuma N.P., Taylor J.P. VCP/p97 is essential for maturationof ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy. 2010;6:217–227. doi: 10.4161/auto.6.2.11014.
    1. Ju J.S., Fuentealba R.A., Miller S.E., Jackson E., Piwnica-Worms D., Baloh R.H., Weihl C.C. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell. Biol. 2009;187:875–888. doi: 10.1083/jcb.200908115.
    1. Yeo B.K., Hong C.J., Chung K.M., Woo H., Kim K., Jung S., Kim E.K., Yu S.W. Valosin-containing protein is a key mediator between autophagic cell death and apoptosis in adult hippocampal neural stem cells following insulin withdrawal. Mol. Brain. 2016;9:31. doi: 10.1186/s13041-016-0212-8.
    1. Chung K.M., Park H., Jung S., Ha S., Yoo S.J., Woo H., Lee H.J., Kim S.W., Kim E.K., Moon C., et al. Calpain determines the propensity of adult Hippocampal neural stem cells to Autophagic cell death following insulin withdrawal. Stem Cells. 2015;33:3052–3064. doi: 10.1002/stem.2082.
    1. Dantuma N.P., Hoppe T. Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin. Trends Cell Biol. 2012;22:483–491. doi: 10.1016/j.tcb.2012.06.003.
    1. Uchiyama K., Kondo H. p97/p47-mediated biogenesis of Golgi and ER. J. Biochem. 2005;137:115–119. doi: 10.1093/jb/mvi028.
    1. Uchiyama K., Totsukawa G., Puhka M., Kaneko Y., Jokitalo E., Dreveny I., Beuron F., Zhang X., Freemont P., Kondo H. p37 is a p97 adaptor required for Golgi and ER biogenesis in interphase and at the end of mitosis. Dev. Cell. 2006;11:803–816. doi: 10.1016/j.devcel.2006.10.016.
    1. Meyer H.H., Wang Y., Warren G. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 2002;21:5645–5652. doi: 10.1093/emboj/cdf579.
    1. Uchiyama K., Jokitalo E., Kano F., Murata M., Zhang X., Canas B., Newman R., Rabouille C., Pappin D., Freemont P., et al. VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo. J. Cell Biol. 2002;159:855–866. doi: 10.1083/jcb.200208112.
    1. Kirchner P., Bug M., Meyer H. Ubiquitination of the N-terminal region of caveolin-1 regulates endosomal sorting by theVCP/p97 AAA-ATPase. J. Biol. Chem. 2013;288:7363–7372. doi: 10.1074/jbc.M112.429076.
    1. Meyer H., Drozdowska A., Dobrynin G. A role for Cdc48/p97 and Aurora B in controlling chromatin condensation during exit from mitosis. Biochem. Cell Biol. 2010;88:23–28. doi: 10.1139/O09-119.
    1. Ritz D., Vuk M., Kirchner P., Bug M., Schutz S., Hayer A., Bremer S., Lusk C., Baloh R.H., Lee H., et al. Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nat. Cell Biol. 2011;13:1116–1123. doi: 10.1038/ncb2301.
    1. Olzmann J.A., Richter C.M., Kopito R.R. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl. Acad. Sci. USA. 2013;110:1345–1350. doi: 10.1073/pnas.1213738110.
    1. Yamamoto S., Tomita Y., Hoshida Y., Sakon M., Kameyama M., Imaoka S., Sekimoto M., Nakamori S., Monden M., Aozasa K. Expression of valosin-containing protein in colorectal carcinomas as a predictor for disease recurrence and prognosis. Clin. Cancer Res. 2004;10:651–657. doi: 10.1158/1078-0432.CCR-1576-03.
    1. Laguë M.N., Romieu-Mourez R., Bonneil É., Boyer A., Pouletty N., Mes-Masson A.M., Thibault P., Nadeau M.È., Boerboom D. Proteomic profiling of a mouse model for ovarian granulosa cell tumor identifies VCP as a highly sensitive serum tumor marker in several human cancers. PLoS ONE. 2012;7:e42470. doi: 10.1371/journal.pone.0042470.
    1. Fu Q., Jiang Y., Zhang D., Liu X., Guo J., Zhao J. Valosin-containing protein (VCP) promotes the growth, invasion, and metastasis of colorectal cancer through activation of STAT3 signaling. Mol. Cell Biochem. 2016;418:189–198. doi: 10.1007/s11010-016-2746-6.
    1. Sun H., Wang R., Liu Y., Mei H., Liu X., Peng Z. USP11 induce resistance to 5-Fluorouracil in Colorectal Cancer through activating autophagy by stabilizing VCP. J. Cancer. 2021;12:2317–2325. doi: 10.7150/jca.52158.
    1. Yamamoto S., Tomita Y., Nakamori S., Hoshida Y., Iizuka N., Okami J., Nagano H., Dono K., Umeshita K., Sakon M., et al. Valosin-containing protein (p97) and Ki-67 expression is a useful marker in detecting malignant behavior of pancreatic endocrine neoplasms. Oncology. 2004;66:468–475. doi: 10.1159/000079501.
    1. Marin-Muller C., Li D., Bharadwaj U., Li M., Chen C., Hodges S.E., Fisher W.E., Mo Q., Hung M.C., Yao Q. A tumorigenic factor interactome connected through tumor suppressor microRNA-198 in human pancreatic cancer. Clin. Cancer Res. 2013;19:5901–5913. doi: 10.1158/1078-0432.CCR-12-3776.
    1. Yamamoto S., Tomita Y., Nakamori S., Hoshida Y., Nagano H., Dono K., Umeshita K., Sakon M., Monden M., Aozasa K. Elevated expression of valosin-containing protein (p97) in hepatocellular carcinoma is correlated with increased incidence of tumor recurrence. J. Clin. Oncol. 2003;21:447–452. doi: 10.1200/JCO.2003.06.068.
    1. Liu Y., Hei Y., Shu Q., Dong J., Gao Y., Fu H., Zheng X., Yang G. VCP/p97, down-regulated by microRNA-129-5p.; could regulate the progression of hepatocellular carcinoma. PLoS ONE. 2012;7:e35800.:e35800. doi: 10.1371/journal.pone.0035800.
    1. Fang L., Sun J., Pan Z., Song Y., Zhong L., Zhang Y., Liu Y., Zheng X., Huang P. Long non-coding RNA NEAT1 promotes hepatocellular carcinoma cell proliferation through the regulation of miR-129-5p-VCP-IkappaB. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;313:G150–G156. doi: 10.1152/ajpgi.00426.2016.
    1. Yi P., Higa A., Taouji S., Bexiga M.G., Marza E., Arma D., Castain C., Bail B.L., Simpson J.C., Rosenbaum J., et al. Sorafenib-mediated targeting of the AAA+ ATPase p97/VCP leads to disruption of the secretory pathway, endoplasmic reticulum stress, and hepatocellular cancer cell death. Mol. Cancer Ther. 2012;11:2610–2620. doi: 10.1158/1535-7163.MCT-12-0516.
    1. Hsu S.H., Motiwala T., Roy S., Claus R., Mustafa M., Plass C., Freitas M.A., Ghoshal K., Jacob S.T. Methylation of the PTPRO gene in human hepatocellular carcinoma and identification of VCP as its substrate. J. Cell. Biochem. 2013;114:1810–1818. doi: 10.1002/jcb.24525.
    1. Yamamoto S., Tomita Y., Hoshida Y., Takiguchi S., Fujiwara Y., Yasuda T., Yano M., Nakamori S., Sakon M., Monden M., et al. Expression level of valosin-containing protein is strongly associated with progression and prognosis of gastric carcinoma. J. Clin. Oncol. 2003;21:2537–2544. doi: 10.1200/JCO.2003.12.102.
    1. Chan C.H., Ko C.C., Chang J.G., Chen S.F., Wu M.S., Lin J.T., Chow L.P. Subcellular and functional proteomic analysis of the cellular responses induced by Helicobacter pylori. Mol. Cell Proteomics. 2006;5:702–713. doi: 10.1074/mcp.M500029-MCP200.
    1. Yu C.C., Yang J.C., Chang Y.C., Chuang J.G., Lin C.W., Wu M.S., Chow L.P. VCP phosphorylation-dependent interaction partners prevent apoptosis in Helicobacter pylori-infected gastric epithelial cells. PLoS ONE. 2013;8:e55724.
    1. Arai M.A., Taguchi S., Komatsuzaki K., Uchiyama K., Masuda A., Sampei M., Satoh M., Kado S., Ishibashi M. Valosin-containing Protein is a Target of 5′-l Fuligocandin B and Enhances TRAIL Resistance in Cancer Cells. Chem. Open. 2016;5:574–579. doi: 10.1002/open.201600081.
    1. Yamamoto S., Tomita Y., Hoshida Y., Iizuka N., Kidogami S., Miyata H., Takiguchi S., Fujiwara Y., Yasuda T., Yano M. Expression level of valosin-containing protein (p97) is associated with prognosis of esophageal carcinoma. Clin. Cancer Res. 2004;10:5558–5565. doi: 10.1158/1078-0432.CCR-0723-03.
    1. Luo H., Song H., Mao R., Gao Q., Feng Z., Wang N., Song S., Jiao R., Ni P., Ge H. Targeting valosin-containing protein enhances the efficacy of radiation therapy in esophageal squamous cell carcinoma. Cancer Sci. 2019;110:3464–3475. doi: 10.1111/cas.14184.
    1. Cui Y., Niu M., Zhang X., Zhong Z., Wang J., Pang D. High expression of valosin-containing protein predicts poor prognosis in patients with breast carcinoma. Tumour Biol. 2015;36:9919–9927. doi: 10.1007/s13277-015-3748-9.
    1. Zhu C., Rogers A., Asleh K., Won J., Gao D., Leung S., Li S., Vij K.R., Zhu J., Held J.M., et al. Phospho-Ser(784)-VCP Is Required for DNA Damage Response and Is Associated with Poor Prognosis of Chemotherapy-Treated Breast Cancer. Cell Rep. 2020;31:107745. doi: 10.1016/j.celrep.2020.107745.
    1. Shao J. Ser(784) phosphorylation: A clinically relevant enhancer of VCP function in the DNA damage response. Mol. Cell Oncol. 2020;7:1796179. doi: 10.1080/23723556.2020.1796179.
    1. Shi X., Zhu K., Ye Z., Yue J. VCP/p97 targets the nuclear export and degradation of p27(Kip1) during G1 to S phase transition. FASEB J. 2020;34:5193–5207. doi: 10.1096/fj.201901506R.
    1. Li C., Huang Y., Fan Q., Quan H., Dong Y., Nie M., Wang J., Xie F., Ji J., Zhou L., et al. p97/VCP is highly expressed in the stem-like cells of breast cancer and controls cancer stemness partly through the unfolded protein response. Cell Death Dis. 2021;12:286. doi: 10.1038/s41419-021-03555-5.
    1. Tsujimoto Y., Tomita Y., Hoshida Y., Kono T., Oka T., Yamamoto S., Nonomura N., Okuyama A., Aozasa K. Elevated expression of valosin-containing protein (p97) is associated with poor prognosis of prostate cancer. Clin. Cancer Res. 2004;10:3007–3012. doi: 10.1158/1078-0432.CCR-03-0191.
    1. Duscharla D., Reddy K., Dasari C., Bhukya S., Ummanni R. Interleukin-6 induced overexpression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J. Cell. Physiol. 2018;233:7148–7164. doi: 10.1002/jcp.26639.
    1. Ogor P., Yoshida T., Koike M., Kakizuka A. VCP relocalization limits mitochondrial activity, GSH depletion, and ferroptosis during starvation in PC3 prostate cancer cells. Genes Cells. 2021;6:570–582. doi: 10.1111/gtc.12872.
    1. Yamamoto S., Tomita Y., Hoshida Y., Iizuka N., Monden M., Yamamoto S., Iuchi K., Aozasa K. Expression level of valosin-containing protein (p97) is correlated with progression and prognosis of non-small-cell lung carcinoma. Ann. Surg. Oncol. 2004;11:697–704. doi: 10.1245/ASO.2004.10.018.
    1. Valle C.W., Min T., Bodas M., Mazur S., Begum S., Tang D., Vij N. Critical role of VCP/p97 in the pathogenesis and progression of non-small cell lung carcinoma. PLoS ONE. 2011;6:e29073. doi: 10.1371/journal.pone.0029073.
    1. Xiao Y., Li X., Wang H., Wen R., He J., Tang J. Epigenetic regulation of miR-129-2 and its effects on the proliferation and invasion in lung cancer cells. J. Cell. Mol. Med. 2015;19:2172–2180. doi: 10.1111/jcmm.12597.
    1. Shah P.P., Beverly L.J. Regulation of VCP/p97 demonstrates the critical balance between cell death and epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget. 2015;6:17725–17737. doi: 10.18632/oncotarget.3918.
    1. Asai T., Tomita Y., Nakatsuka S., Hoshida Y., Myoui A., Yoshikawa H., Aozasa K. VCP (p97) regulates NFkappaB signaling pathway, which is important for metastasis of osteosarcoma cell line. Jpn. J. Cancer Res. 2002;93:296–304. doi: 10.1111/j.1349-7006.2002.tb02172.x.
    1. Zucchini C., Rocchi A., Manara M.C., De Sanctis P., Capanni C., Bianchini M., Carinci P., Scotlandi K., Valvassori L. Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines. Int. J. Oncol. 2008;32:17–31. doi: 10.3892/ijo.32.1.17.
    1. He J.Y., Xi W.H., Zhu L.B., Long X.H., Chen X.Y., Liu J.M., Luo Q.F., Zhu X.P., Liu Z.L. Knockdown of Aurora-B alters osteosarcoma cell malignant phenotype via decreasing phosphorylation of VCP and NF-κB signaling. Tumour Biol. 2015;36:3895–3902. doi: 10.1007/s13277-014-3032-4.
    1. Long X.H., Zhou Y.F., Peng A.F., Zhang Z.H., Chen X.Y., Chen W.Z., Liu J.M., Huang S.H., Liu Z.L. Demethylation-mediated miR-129-5p up-regulation inhibits malignant phenotype of osteogenic osteosarcoma by targeting Homo sapiens valosin-containing protein (VCP) Tumour Biol. 2015;36:3799–3806. doi: 10.1007/s13277-014-3021-7.
    1. Long X.H., Zhou Y.F., Lan M., Huang S.H., Liu Z.L., Shu Y. Valosin-containing protein promotes metastasis of osteosarcoma through autophagy induction and anoikis inhibition via the ERK/NF-κβ/beclin-1 signaling pathway. Oncol. Lett. 2019;18:3823–3829.
    1. Nagy N., Matskova L., Kis L.L., Hellman U., Klein G., Klein E. The proapoptotic function of SAP provides a clue to the clinical picture of X-linked lymphoproliferative disease. Proc. Natl. Acad. Sci. USA. 2009;106:11966–11971. doi: 10.1073/pnas.0905691106.
    1. Abaan O.D., Hendriks W., Uren A., Toretsky J.A., Erkizan H.V. Valosin containing protein (VCP/p97) is a novel substrate for the protein tyrosine phosphatase PTPL1. Exp. Cell. Res. 2013;319:1–11. doi: 10.1016/j.yexcr.2012.09.003.
    1. Yamamoto S., Tomita Y., Hoshida Y., Toyosawa S., Inohara H., Kishino M., Kogo M., Nakazawa M., Murakami S., Iizuka N., et al. Expression level of valosin-containing protein (VCP) as a prognostic marker for gingival squamous cell carcinoma. Ann. Oncol. 2004;15:1432–1438. doi: 10.1093/annonc/mdh354.
    1. Towle R., Tsui I.F., Zhu Y., MacLellan S., Poh C.F., Garnis C. Recurring DNA copy number gain at chromosome 9p13 plays a role in the activation of multiple candidate oncogenes in progressing oral premalignant lesions. Cancer Med. 2014;3:1170–1184. doi: 10.1002/cam4.307.
    1. Meyer M.F., Seuthe I.M., Drebber U., Siefer O., Kreppel M., Klein M.O., Mikolajczak S., Klussmann J.P., Preuss S.F., Huebbers C.U. Valosin-containing protein (VCP/p97)-expression correlates with prognosis of HPV- negative oropharyngeal squamous cell carcinoma (OSCC) PLoS ONE. 2014;9:e114170. doi: 10.1371/journal.pone.0114170.
    1. Guo X.B., Ma W.L., Liu L.J., Huang Y.L., Wang J., Huang L.H., Peng X.D., Yin J.Y., Li J.G., Chen S.J., et al. Effects of gene polymorphisms in the endoplasmic reticulum stress pathway on clinical outcomes of chemoradiotherapy in Chinese patients with nasopharyngeal carcinoma. Acta Pharmacol. Sin. 2017;38:571–580. doi: 10.1038/aps.2016.148.
    1. Yamamoto S., Tomita Y., Uruno T., Hoshida Y., Qiu Y., Iizuka N., Nakamichi I., Miyauchi A., Aozasa K. Increased expression of valosin-containing protein (p97) is correlated with disease recurrence in follicular thyroid cancer. Ann. Surg. Oncol. 2005;12:925–934. doi: 10.1245/ASO.2005.07.002.
    1. Lee H.S., Kang Y., Tae K., Bae G.U., Park J.Y., Cho Y.H., Yang M. Proteomic Biomarkers for Bisphenol A-Early Exposure and Women’s Thyroid Cancer. Cancer Res. Treat. 2018;50:111–117. doi: 10.4143/crt.2017.001.
    1. Fletcher A., Read M.L., Thornton C.E.M., Larner D.P., Poole V.L., Brookes K., Nieto H.R., Alshahrani M., Thompson R.J., Lavery G.G., et al. Targeting Novel Sodium Iodide Symporter Interactors ADP-Ribosylation Factor 4 and Valosin-Containing Protein Enhances Radioiodine Uptake. Cancer Res. 2020;80:102–115. doi: 10.1158/0008-5472.CAN-19-1957.
    1. Zhu W., Li D., Xiao L. Upregulation of valosin-containing protein (VCP) is associated with poor prognosis and promotes tumor progression of orbital B-cell lymphoma. Onco Targets Ther. 2018;12:243–253. doi: 10.2147/OTT.S182118.
    1. Nishimura N., Radwan M.O., Amano M., Endo S., Fujii E., Hayashi H., Ueno S., Ueno N., Tatetsu H., Hata H., et al. Novel p97/VCP inhibitor induces endoplasmic reticulum stress and apoptosis in both bortezomib-sensitive and -resistant multiple myeloma cells. Cancer Sci. 2019;110:3275–3287. doi: 10.1111/cas.14154.
    1. Lauten M., Schrauder A., Kardinal C., Harbott J., Welte K., Schlegelberger B., Schrappe M., von Neuhoff N. Unsupervised proteome analysis of human leukaemia cells identifies the Valosin-containing protein as a putative marker for glucocorticoid resistance. Leukemia. 2006;20:820–826. doi: 10.1038/sj.leu.2404162.
    1. Bosque A., Dietz L., Gallego-Lleyda A., Sanclemente M., Iturralde M., Naval J., Alava M.A., Martínez-Lostao L., Thierse H.J., Anel A. Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein. Oncotarget. 2016;7:29287–29305. doi: 10.18632/oncotarget.8678.
    1. Kedracka-Krok S., Jankowska U., Elas M., Sowa U., Swakon J., Cierniak A., Olko P., Romanowska-Dixon B., Urbanska K. Proteomic analysis of proton beam irradiated human melanoma cells. PLoS ONE. 2014;9:e84621. doi: 10.1371/journal.pone.0084621.
    1. Ebstein F., Keller M., Paschen A., Walden P., Seeger M., Bürger E., Krüger E., Schadendorf D., Kloetzel P.M., Seifert U. Exposure to Melan-A/MART-126-35 tumor epitope specific CD8(+)T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS) Sci. Rep. 2016;6:25208. doi: 10.1038/srep25208.
    1. Jiang N., Shen Y., Fei X., Sheng K., Sun P., Qiu Y., Larner J., Cao L., Kong X., Mi J. Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells. Cell Death Dis. 2013;4:e647. doi: 10.1038/cddis.2013.171.
    1. Biau J., Chautard E., De Koning L., Court F., Pereira B., Verrelle P., Dutreix M. Predictive biomarkers of resistance to hypofractionated radiotherapy in high grade glioma. Radiat. Oncol. 2017;12:123. doi: 10.1186/s13014-017-0858-0.
    1. Li Z.Y., Zhang C., Zhang Y., Chen L., Chen B.D., Li Q.Z., Zhang X.J., Li W.P. A novel HDAC6 inhibitor Tubastatin A: Controls HDAC6-p97/VCP-mediated ubiquitination-autophagy turnover and reverses Temozolomide-induced ER stress-tolerance in GBM cells. Cancer Lett. 2017;391:89–99. doi: 10.1016/j.canlet.2017.01.025.
    1. Choi J., Topouza D.G., Tarnouskaya A., Nesdoly S., Koti M., Duan Q.L. Gene networks and expression quantitative trait loci associated with adjuvant chemotherapy response in high-grade serous ovarian cancer. BMC Cancer. 2020;20:413. doi: 10.1186/s12885-020-06922-1.
    1. Nakkas H., Ocal B.G., Kipel S., Akcan G., Sahin C., Ardicoglu A., Cayli S. Ubiquitin proteasome system and autophagy associated proteins in human testicular tumors. Tissue Cell. 2021;71:101513. doi: 10.1016/j.tice.2021.101513.
    1. Kilgas S., Singh A.N., Paillas S., Then C.K., Torrecilla I., Nicholson J., Browning L., Vendrell I., Konietzny R., Kessler B.M., et al. p97/VCP inhibition causes excessive MRE11-dependent DNA end resection promoting cell killing after ionizing radiation. Cell Rep. 2021;35:109153. doi: 10.1016/j.celrep.2021.109153.
    1. McHugh A., Fernandes K., Chinner N., Ibrahim A.F.M., Garg A.K., Boag G., Hepburn L.A., Proby C.M., Leigh I.M., Saville M.K. The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma. J. Invest. Dermatol. 2020;140:1154–1165. doi: 10.1016/j.jid.2019.09.024.
    1. Bai R., Rebelo A., Kleeff J., Sunami Y. Identification of prognostic lipid droplet-associated genes in pancreatic cancer patients via bioinformatics analysis. Lipids Health Dis. 2021;20:58. doi: 10.1186/s12944-021-01476-y.
    1. Liu G.M., Zeng H.D., Zhang C.Y., Xu J.W. Key genes associated with diabetes mellitus and hepatocellular carcinoma. Pathol. Res. Pract. 2019;215:152510. doi: 10.1016/j.prp.2019.152510.
    1. Peng J., Yang L.X., Zhao X.Y., Gao Z.Q., Yang J., Wu W.T., Wang H.J., Wang J.C., Qian J., Chen H.Y., et al. VCP gene variation predicts outcome of advanced non-small-cell lung cancer platinum-based chemotherapy. Tumour Biol. 2013;34:953–961. doi: 10.1007/s13277-012-0631-9.
    1. Junk S., Cario G., Wittner N., Stanulla M., Scherer R., Schlegelberger B., Schrappe M., von Neuhoff N., Lauten M. Bortezomib Treatment can Overcome Glucocorticoid Resistance in Childhood B-cell Precursor Acute Lymphoblastic Leukemia Cell Lines. Klin. Padiatr. 2015;227:123–130. doi: 10.1055/s-0034-1398628.
    1. Bastola P., Neums L., Schoenen F.J., Chien J. VCP inhibitors induce endoplasmic reticulum stress, cause cell cycle arrest, trigger caspase-mediated cell death and synergistically kill ovarian cancer cells in combination with Salubrinal. Mol. Oncol. 2016;10:1559–1574. doi: 10.1016/j.molonc.2016.09.005.
    1. Bastola P., Wang F., Schaich M.A., Gan T., Freudenthal B.D., Chou T.F., Chien J. Specific mutations in the D1-D2 linker region of VCP/p97 enhance ATPase activity and confer resistance to VCP inhibitors. Cell Death Discov. 2017;3:17065. doi: 10.1038/cddiscovery.2017.65.
    1. Chapman E., Maksim N., de la Cruz F., La Clair J.J. Inhibitors of the AAA+ chaperone p97. Molecules. 2015;20:3027–3049. doi: 10.3390/molecules20023027.
    1. Alagarsamy V., Chitra K., Saravanan G., Solomon V.R., Sulthana M.T., Narendhar B. An overview of quinazolines: Pharmacological significance and recent developments. Eur. J. Med. Chem. 2018;10:628–685. doi: 10.1016/j.ejmech.2018.03.076.
    1. Chou T.F., Deshaises R.J. Development of p97 AAA ATPase inhibitors. Autophagy. 2011;7:1091–1092. doi: 10.4161/auto.7.9.16489.
    1. Chou T.F., Brown S.J., Minond D., Nordin B.E., Li K., Jones A.C., Chase P., Porubsky P.R., Stoltz B.M., Schoenen F., et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl. Acad. Sci. USA. 2011;108:4834–4839. doi: 10.1073/pnas.1015312108.
    1. Auner H.W., Moody A.M., Ward T.H., Kraus M., Milan E., May P., Chaidos A., Driessen C., Cenci S., Dazzi F., et al. Combined inhibition of p97 and the proteasome causes lethal disruption of the secretory apparatus in multiple myeloma cells. PLoS ONE. 2013;8:e74415. doi: 10.1371/journal.pone.0074415.
    1. Zhang Z., Wang Y., Li C., Shi Z., Hao Q., Wang W., Song X., Zhao Y., Jiao S., Zhou Z. The Transitional Endoplasmic Reticulum ATPase p97 Regulates the Alternative Nuclear Factor NF-κB Signaling via Partial Degradation of the NF-κB Subunit p100. J. Biol. Chem. 2015;290:19558–19568. doi: 10.1074/jbc.M114.630061.
    1. Walworth K., Bodas M., Campbell R.J., Swanson D., Sharma A., Vij N. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression. PLoS ONE. 2016;11:e0158507. doi: 10.1371/journal.pone.0158507.
    1. Cayli S., Sahin C., Sanci T.O., Nakkas H. Inhibition of p97/VCP function leads to defective autophagosome maturation, cell cycle arrest and apoptosis in mouse Sertoli cells. Theriogenology. 2020;158:196–206. doi: 10.1016/j.theriogenology.2020.09.017.
    1. Desdicioglu R., Sahin C., Yavuz F., Cayli S. Disruption of p97/VCP induces autophagosome accumulation, cell cycle arrest and apoptosis in human choriocarcinoma cells. Mol. Biol. Rep. 2021;48:2163–2171. doi: 10.1007/s11033-021-06225-z.
    1. Chou T.F., Li K., Frankowski K.J., Schoenen F.J., Deshaies R.J. Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. Chem. Med. Chem. 2013;8:297–312. doi: 10.1002/cmdc.201200520.
    1. Fang C.J., Gui L., Zhang X., Moen D.R., Li K., Frankowski K.J., Lin H.J., Schoenen F.J., Chou T. Evaluating p97 inhibitor analogues for their domain selectivity and potency against the p97-p47 complex. Chem. Med. Chem. 2015;10:52–56. doi: 10.1002/cmdc.201402420.
    1. Feng Q., Zheng J., Zhang J., Zhao M. Synthesis and In Vitro Evaluation of 2-[3-(2-Aminoethyl)-1H-indol-1-yl]-N-benzylquinazolin-4-amine as a Novel p97/VCP Inhibitor Lead Capable of Inducing Apoptosis in Cancer Cells. ACS Omega. 2020;5:31784–31791. doi: 10.1021/acsomega.0c04478.
    1. Zhou H.J., Wang J., Yao B., Wong S., Djakovic S., Kumar B., Rice J., Valle E., Soriano F., Menon M.K., et al. Discovery of a First-in-Class, Potent, Selective, and Orally Bioavailable Inhibitor of the p97 AAA ATPase (CB-5083) J. Med. Chem. 2015;58:9480–9497. doi: 10.1021/acs.jmedchem.5b01346.
    1. Anderson D.J., Moigne R.L., Djakovic S., Kumar B., Rice J., Wong S., Wang J., Yao B., Valle E., von Soly S.K., et al. Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis. Cancer Cell. 2015;28:653–665. doi: 10.1016/j.ccell.2015.10.002.
    1. Le Moigne R., Aftab B.T., Djakovic S., Dhimolea E., Valle E., Murnane M., King E.M., Soriano F., Menon M.K., Wu Z.Y., et al. The p97 Inhibitor CB-5083 Is a Unique Disrupter of Protein Homeostasis in Models of Multiple Myeloma. Mol. Cancer Ther. 2017;16:2375–2386. doi: 10.1158/1535-7163.MCT-17-0233.
    1. Gugliotta G., Sudo M., Cao Q., Lin D., Sun H., Takao S., le Moigne R., Rolfe M., Gery S., Müschen M., et al. Valosin-Containing Protein/p97 as a Novel Therapeutic Target in Acute Lymphoblastic Leukemia. Neoplasia. 2017;19:750–761. doi: 10.1016/j.neo.2017.08.001.
    1. Vekaria P.H., Kumar A., Subramaniam D., Dunavin N., Vallurupalli A., Schoenen F., Ganguly S., Anant S., McGuirk J.P., Jensen R.A., et al. Functional cooperativity of p97 and histone deacetylase 6 in mediating DNA repair in mantle cell lymphoma cells. Leukemia. 2019;33:1675–1686. doi: 10.1038/s41375-018-0355-y.
    1. Zhao Z., Wu M., Zhang X., Jin Q., Wang Y., Zou C., Huang G., Yin J., Xie X., Shen J. CB-5083, an inhibitor of P97, suppresses osteosarcoma growth and stem cell properties by altering protein homeostasis. Am. J. Transl. Res. 2020;12:2956–2967.
    1. Her N.G., Kesari S., Nurmemmedov E. Thrombospondin-1 counteracts the p97 inhibitor CB-5083 in colon carcinoma cells. Cell Cycle. 2020;19:1590–1601. doi: 10.1080/15384101.2020.1754584.
    1. Wang J., Chen Y., Huang C., Hao Q., Zeng S.X., Omari S., Zhang Y., Zhou X., Lu H. Valosin-containing protein stabilizes mutant p53 to promote pancreatic cancer growth. Cancer Res. 2021;81:4041–4053. doi: 10.1158/0008-5472.CAN-20-3855.
    1. Roux B., Vaganay C., Vargas J.D., Alexe G., Benaksas C., Pardieu B., Fenouille N., Ellegast J.M., Malolepsza E., Ling F., et al. Targeting acute myeloid leukemia dependency on VCP-mediated DNA repair through a selective second-generation small-molecule inhibitor. Sci. Transl. Med. 2021;13:eabg1168. doi: 10.1126/scitranslmed.abg1168.
    1. Leinonen H., Cheng C., Pitkänen M., Sander C.L., Zhang J., Saeid S., Turunen T., Shmara A., Weiss L., Ta L., et al. A p97/valosin-containing protein inhibitor drug CB-5083 has a potent but reversible off-target effect on phosphodiesterase-6. J. Pharmacol. Exp. Ther. 2021;378:31–41. doi: 10.1124/jpet.120.000486.
    1. Kumar S., Narasimhan B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J. 2018;12:38. doi: 10.1186/s13065-018-0406-5.
    1. Zarenezhad E., Farjam M., Iraji A. Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application. J. Mol. Struct. 2021;1230:129833. doi: 10.1016/j.molstruc.2020.129833.
    1. Cervi G., Magnaghi P., Asa D., Avanzi N., Badari A., Borghi D., Caruso M., Cirla A., Cozzi L., Felder E., et al. Discovery of 2-(cyclohexylmethylamino)pyrimidines as a new class of reversible valosine containing protein inhibitors. J. Med. Chem. 2014;57:10443–10454. doi: 10.1021/jm501313x.
    1. Wang X., Bai E., Zhou H., Sha S., Miao H., Qin Y., Liu Z., Wang J., Zhang H., Lei M., et al. Discovery of a new class of valosine containing protein (VCP/P97) inhibitors for the treatment of non-small cell lung cancer. Bioorg. Med. Chem. 2019;27:533–544. doi: 10.1016/j.bmc.2018.12.036.
    1. Sharma P.C., Bansal K.K., Sharma A., Sharma D., Deep A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem. 2020;15:188:112016. doi: 10.1016/j.ejmech.2019.112016.
    1. Zhang Y., Xie X., Wang X., Wen T., Zhao C., Liu H., Zhao B., Zhu Y. Discovery of novel pyrimidine molecules containing boronic acid as VCP/p97 Inhibitors. Bioorg. Med. Chem. 2021;38:116114. doi: 10.1016/j.bmc.2021.116114.
    1. Zhang G., Li S., Wang F., Jones A.C., Goldberg A.F.G., Lin B., Virgil S., Stoltz B.M., Deshaies R.J., Chou T.F. A covalent p97/VCP ATPase inhibitor can overcome resistance to CB-5083 and NMS-873 in colorectal cancer cells. Eur. J. Med. Chem. 2021;213:113148. doi: 10.1016/j.ejmech.2020.113148.
    1. Sahu J.K., Ganguly S., Kaushik A. Triazoles: A valuable insight into recent developments and biological activities. Chin. J. Nat. Med. 2013;11:456–465. doi: 10.1016/S1875-5364(13)60084-9.
    1. Kumawat M.K. Thiazole Containing Heterocycles with Antimalarial Activity. Curr. Drug Discov. Technol. 2018;15:196–200. doi: 10.2174/1570163814666170725114159.
    1. Chhabria M.T., Patel S., Modi P., Brahmkshatriya P.S. Thiazole: A Review on Chemistry, Synthesis and Therapeutic Importance of its Derivatives. Curr. Top. Med. Chem. 2016;16:2841–2862. doi: 10.2174/1568026616666160506130731.
    1. Bursavich M.G., Parker D.P., Willardsen J.A., Gao Z.H., Davis T., Ostanin K., Robinson R., Peterson A., Cimbora D.M., Zhu J.F., et al. 2-Anilino-4-aryl-1,3-thiazole inhibitors of valosin-containing protein (VCP or p97) Bioorg. Med. Chem. Lett. 2010;20:1677–1679. doi: 10.1016/j.bmcl.2010.01.058.
    1. Polucci P., Magnaghi P., Angiolini M., Asa D., Avanzi N., Badari A., Bertrand J., Casale E., Cauteruccio S., Cirla A., et al. Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure-activity relationships. J. Med. Chem. 2013;56:437–450. doi: 10.1021/jm3013213.
    1. Magnaghi P., D’Alessio R., Valsasina B., Avanzi N., Rizzi S., Asa D., Gasparri F., Cozzi L., Cucchi U., Orrenius C., et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat. Chem. Biol. 2013;9:548–556. doi: 10.1038/nchembio.1313.
    1. Sachdeva H., Mathur J., Guleria A. INDOLE DERIVATIVES AS POTENTIAL ANTICANCER AGENTS: A REVIEW. J. Chil. Chem. Soc. 2020;65:4900–4907. doi: 10.4067/s0717-97072020000204900.
    1. Martin T.A., Jiang W.G. Anti-Cancer agents in medicinal chemistry (Formerly current medicinal chemistry—Anti-cancer agents) Anticancer Agents Med. Chem. 2010;10:1. doi: 10.2174/1871520611009010001.
    1. Alverez C., Bulfer S.L., Chakrasali R., Chimenti M.S., Deshaies R.J., Green N., Kelly M., LaPorte M.G., Lewis T.S., Liang M., et al. Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway. ACS Med Chem. Lett. 2015;7:182–187. doi: 10.1021/acsmedchemlett.5b00396.
    1. Alverez C., Arkin M.R., Bulfer S.L., Colombo R., Kovaliov M., LaPorte M.G., Lim C., Liang M., Moore W.J., Neitz R.J., et al. Structure-Activity Study of Bioisosteric Trifluoromethyl and Pentafluorosulfanyl Indole Inhibitors of the AAA ATPase p97. ACS Med. Chem. Lett. 2015;6:1225–1230. doi: 10.1021/acsmedchemlett.5b00364.
    1. LaPorte M.G., Burnett J.C., Colombo R., Green N., Moore W.J., Yue Z., Li S., Arkin M.R., Wipf P., Huryn D.M., et al. Optimization of Phenyl Indole Inhibitors of the AAA+ ATPase p97. ACS Med. Chem. Lett. 2018;9:1075–1081. doi: 10.1021/acsmedchemlett.8b00372.
    1. Banerjee S., Bartesaghi A., Merk A., Wipf P., Falconieri V., Deshaies R.J., Milne J.L.S., Huryn D., Arkin M., Subramaniam S., et al. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science. 2016;351:871–875. doi: 10.1126/science.aad7974.
    1. Fieger E., Hirsch C., Vyas J.M., Gordon E., Ploegh H.L., Tortorella D. Dissection of dislocation pathway for type I membrane proteins with a new small molecule inhibitor, eeyarstatin. Mol. Biol. Cell. 2004;15:1635–1646. doi: 10.1091/mbc.e03-07-0506.
    1. Wang Q., Shinkre B.A., Lee J.G., Weniger M.A., Liu Y., Chen W., Wiestner A., Trenkle W.C., Ye Y. The ERAD inhibitor Eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group. PLoS ONE. 2010;5:e15479. doi: 10.1371/journal.pone.0015479.
    1. Wang Q., Li L., Ye Y. Inhibition of p97-dependent protein degradation by Eeyarestatin, I. J. Biol. Chem. 2008;283:7445–7454. doi: 10.1074/jbc.M708347200.
    1. Cross B.C., McKibbin C., Callan A.C., Roboti P., Piacenti M., Rabu C., Wilson C.M., Whitehead R., Flitsch S.L., Pool M.R., et al. Eeyarestatin I inhibits Sec61-mediated protein translocation at the endoplasmic reticulum. J. Cell Sci. 2009;122:4393–4400. doi: 10.1242/jcs.054494.
    1. Gamayun I., O’Keefe S., Pick T., Flitsch S.L., Whitehead R.C., Swanton E., Helms V., High S., Zimmermann R., Cavalié A., et al. Eeyarestatin Compounds Selectively Enhance Sec61-Mediated Ca2+ Leakage from the Endoplasmic Reticulum. Cell Chem. Biol. 2019;26:571–583.e6. doi: 10.1016/j.chembiol.2019.01.010.
    1. Wang Q., Mora-Jensen H., Weniger M.A., Perez-Galan P., Wolford C., Hai T., Ron D., Chen W., Trenkle W., Wiestner A., et al. ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc. Natl. Acad. Sci. USA. 2009;106:2200–2225. doi: 10.1073/pnas.0807611106.
    1. Brem G.J., Myolans I., Bruning A. Eeyarestatin causes cervical cancer cell sensitization to bortezomib treatment by augmenting ER stress and CHOP expression. Gynecol. Oncol. 2013;128:383–390. doi: 10.1016/j.ygyno.2012.10.021.
    1. Zhang H., Li K., Lin Y., Xing F., Xiao X., Cai J., Zhu W., Liang J., Tan Y., Fu L., et al. Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Sci. Transl. Med. 2017;9:eaam7996. doi: 10.1126/scitranslmed.aam7996.
    1. Du R., Sullivan D.K., Azizian N.G., Liu Y., Li Y. Inhibition of ERAD synergizes with FTS to eradicate pancreatic cancer cells. BMC Cancer. 2021;21:237. doi: 10.1186/s12885-021-07967-6.
    1. Sasazawa Y., Kanagaki S., Tashiro E., Nogawa T., Muroi M., Kondoh Y., Osada H., Imoto M. Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein. ACS Chem. Biol. 2012;7:892–900. doi: 10.1021/cb200492h.
    1. Shikata Y., Yoshimaru T., Komatsu M., Kanagaki S., Okazaki Y., Toyokuni S., Tashiro E., Ishikawa S., Katagiri T., Imoto M., et al. Protein kinase A inhibition facilitates the antitumor activity of xanthohumol, a valosin-containing protein inhibitor. Cancer Sci. 2017;108:785–794. doi: 10.1111/cas.13175.
    1. Figuerola-Conchas A., Saarbach J., Daguer J.P., Cieren A., Barluenga S., Winssinger N., Gotta M. Small-Molecule Modulators of the ATPase VCP/p97 Affect Specific p97 Cellular Functions. ACS Chem. Biol. 2020;15:243–253. doi: 10.1021/acschembio.9b00832.
    1. Segura-Cabrera A., Tripathi R., Zhang X., Gui L., Chou T.F., Komurov K. A structure- and chemical genomics-based approach for repositioning of drugs against VCP/p97 ATPase. Sci. Rep. 2017;7:44912. doi: 10.1038/srep44912.
    1. Ellegaard A.M., Dehlendorff C., Vind A.C., Anand A., Cederkvist L., Petersen N., Nylandsted J., Stenvang J., Mellemgaard A., Østerlind K., et al. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment. EBioMedicine. 2016;9:130–139. doi: 10.1016/j.ebiom.2016.06.013.
    1. Medina V.A., Rivera E.S. Histamine receptors and cancer pharmacology. Br. J. Pharmacol. 2010;161:755–767. doi: 10.1111/j.1476-5381.2010.00961.x.
    1. Kale V.P., Amin S.G., Pandey M.K. Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochim. Biophys. Acta. 2015;1848:2747–2755. doi: 10.1016/j.bbamem.2015.03.034.
    1. Suvarna K., Honda K., Muroi M., Kondoh Y., Osada H., Watanabe N. A small-molecule ligand of valosin-containing protein/p97 inhibits cancer cell-accelerated fibroblast migration. J. Biol. Chem. 2019;294:2988–2996. doi: 10.1074/jbc.RA118.004741.
    1. Tate J.G., Bamford S., Jubb H.C., Sondka Z., Beare D.M., Bindal N., Boutselakis H., Cole C.G., Creatore C., Dawson E., et al. COSMIC: The Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2019;47:D941–D947. doi: 10.1093/nar/gky1015.
    1. Bastola P., Bilkis R., De Souza C., Minn K., Chien J. Heterozygous mutations in valosin-containing protein (VCP) and resistance to VCP inhibitors. Sci. Rep. 2019;9:11002. doi: 10.1038/s41598-019-47085-9.
    1. Wei Y., Toth J.I., Blanco G.A., Bobkov A.A., Petroski M.D. Adapted ATPase domain communication overcomes the cytotoxicity of p97 inhibitors. J. Biol. Chem. 2018;293:20169–20180. doi: 10.1074/jbc.RA118.004301.
    1. Her N.G., Toth J.I., Ma C.T., Wei Y., Motamedchaboki K., Sergienko E., Petroski M.D. p97 Composition Changes Caused by Allosteric Inhibition Are Suppressed by an On-Target Mechanism that Increases the Enzyme’s ATPase Activity. Cell Chem. Biol. 2016;23:517–528. doi: 10.1016/j.chembiol.2016.03.012.
    1. Wang F., Li S., Gan T., Stott G.M., Flint A., Chou T.F. Allosteric p97 Inhibitors Can Overcome Resistance to ATP-Competitive p97 Inhibitors for Potential Anticancer Therapy. Chem. Med. Chem. 2020;15:685–694. doi: 10.1002/cmdc.201900722.

Source: PubMed

Подписаться