A polyamine-centric, blood-based metabolite panel predictive of poor response to CAR-T cell therapy in large B cell lymphoma

Johannes F Fahrmann, Neeraj Y Saini, Chang Chia-Chi, Ehsan Irajizad, Paolo Strati, Ranjit Nair, Luis E Fayad, Sairah Ahmed, Hun Ju Lee, Swaminathan Iyer, Raphael Steiner, Jody Vykoukal, Ranran Wu, Jennifer B Dennison, Loretta Nastoupil, Preetesh Jain, Michael Wang, Michael Green, Jason Westin, Viktoria Blumenberg, Marco Davila, Richard Champlin, Elizabeth J Shpall, Partow Kebriaei, Christopher R Flowers, Michael Jain, Robert Jenq, Christoph K Stein-Thoeringer, Marion Subklewe, Sattva S Neelapu, Sam Hanash, Johannes F Fahrmann, Neeraj Y Saini, Chang Chia-Chi, Ehsan Irajizad, Paolo Strati, Ranjit Nair, Luis E Fayad, Sairah Ahmed, Hun Ju Lee, Swaminathan Iyer, Raphael Steiner, Jody Vykoukal, Ranran Wu, Jennifer B Dennison, Loretta Nastoupil, Preetesh Jain, Michael Wang, Michael Green, Jason Westin, Viktoria Blumenberg, Marco Davila, Richard Champlin, Elizabeth J Shpall, Partow Kebriaei, Christopher R Flowers, Michael Jain, Robert Jenq, Christoph K Stein-Thoeringer, Marion Subklewe, Sattva S Neelapu, Sam Hanash

Abstract

Anti-CD19 chimeric antigen receptor (CAR) T cell therapy for relapsed or refractory (r/r) large B cell lymphoma (LBCL) results in durable response in only a subset of patients. MYC overexpression in LBCL tumors is associated with poor response to treatment. We tested whether an MYC-driven polyamine signature, as a liquid biopsy, is predictive of response to anti-CD19 CAR-T therapy in patients with r/r LBCL. Elevated plasma acetylated polyamines were associated with non-durable response. Concordantly, increased expression of spermidine synthase, a key enzyme that regulates levels of acetylated spermidine, was prognostic for survival in r/r LBCL. A broad metabolite screen identified additional markers that resulted in a 6-marker panel (6MetP) consisting of acetylspermidine, diacetylspermidine, and lysophospholipids, which was validated in an independent set from another institution as predictive of non-durable response to CAR-T therapy. A polyamine centric metabolomics liquid biopsy panel has predictive value for response to CAR-T therapy in r/r LBCL.

Keywords: CAR-T cell therapy; biomarker; large B cell lymphoma; liquid biopsy; metabolites; prognostic.

Conflict of interest statement

Declaration of interests An Invention Disclosure Report related to findings reported herein has been submitted to the University of Texas. M.S. has received industry research support from Amgen, Gilead, Miltenyi Biotec, Morphosys, Roche, and Seattle Genetics and has served as a consultant/advisor to Amgen, BMS, Celgene, Gilead, Pfizer, Novartis, and Roche. She sits on the advisory boards of Amgen, Celgene, Gilead, Janssen, Novartis, Pfizer, and Seattle Genetics and serves on the speakers' bureau at Amgen, Celgene, Gilead, Janssen, and Pfizer. N.Y.S. has intellectual property rights in the field of cellular immunotherapy and microbiome. S.S.N. received personal fees from Kite, a Gilead Company, Merck, Bristol Myers Squibb, Novartis, Celgene, Pfizer, Allogene Therapeutics, Cell Medica/Kuur, Incyte, Precision Biosciences, Legend Biotech, Adicet Bio, Calibr, Bluebird Bio, and Unum Therapeutics; research support from Kite, a Gilead Company, Bristol Myers Squibb, Merck, Poseida, Cellectis, Celgene, Karus Therapeutics, Unum Therapeutics, Allogene Therapeutics, Precision Biosciences, and Acerta; royalties from Takeda Pharmaceuticals; and has intellectual property rights related to cell therapy. M.G. reports research funding from Sanofi, Kite/Gilead, Abbvie, and Allogene, honoraria from Tessa Therapeutics and Daiichi Sankyo, and stock ownership of KDAc Therapeutics. P.S. received research support from Astrazeneca-Acerta and from ALX Oncology and is a consultant for Roche-Genentech and Hutchinson MediPharma. S.S.N. has received personal fees from Kite, a Gilead Company, Merck, Bristol Myers Squibb, Novartis, Celgene, Pfizer, Allogene Therapeutics, Cell Medica/Kuur, Incyte, Precision Biosciences, Legend Biotech, Adicet Bio, Calibr, Unum Therapeutics, and Bluebird Bio; research support from Kite, a Gilead Company, Bristol Myers Squibb, Merck, Poseida, Cellectis, Celgene, Karus Therapeutics, Unum Therapeutics, Allogene Therapeutics, Precision Biosciences, and Acerta; and patents, royalties, or other intellectual property from Takeda Pharmaceuticals.

Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Association between circulating lysophospholipids and polyamines with progression-free survival and overall survival in patients with B cell lymphoma treated with CAR-T (A and B) Dot plots represent hazard ratios (HRs) (95% CI) per unit increase in log2 scale of detected polyamines and lysophospholipids for progression-free survival (PFS) and overall survival (OS) in the test set (A) and the validation set (B).
Figure 2
Figure 2
Circulating polyamine levels post CAR-T cell infusion in patients with r/r LBCL Linear mixed models with random intercept and slope were incorporated to calculate the association between polyamine levels following CAR-T infusion. Reported values (slope and intercepts) in the table are the average representation of all calculated coefficients for each patient. p values were calculated from 10,000 bootstraps of the delta value between responders and non-responders.
Figure 3
Figure 3
Predictive performance of the 6-marker metabolite panel (6MetP) for CAR-T cell response in the test and validation set (A and B) AUC curves are shown using the 6MetP scores for distinguishing patients who had who progressive disease or died within 6 months following CAR T cell treatment from those patients who had an ongoing complete response in the test set (A) and the validation set (B).
Figure 4
Figure 4
Association between 6MetP scores and PFS and OS in patients with B cell lymphoma treated with CAR-T (A) Kaplan-Meier survival curves illustrate the association between the 6MetP > or ≤ an optimal cutoff value for prognosticating PFS and OS in the test set. The cutoff was established using log rank statistics in the test set and represents the optimal cutoff value for prognosticating PFS. Mantel Cox log rank tests were used to compare differences in survival curves, and 2-sided p values are reported. (B) Kaplan-Meier survival curves illustrate the association between the 6MetP > or ≤ an optimal cutoff value established in the test set for prognosticating PFS and OS in the validation set. Mantel Cox log rank tests were used to compare differences in survival curves, and 1-sided p values are reported.
Figure 5
Figure 5
B cell lymphomas exhibit elevated mRNA expression of polyamine metabolizing enzymes and high spermidine synthase gene expression is prognostic for poor OS (A) Violin plots illustrating mRNA expression of polyamine-metabolizing enzymes (PMEs) in diffuse large B cell lymphoma and normal B lymphocytes in the Basso lymphoma dataset. Statistical significance was determined by 2-sided Wilcoxon rank sum test. ODC1, ornithine decarboxylase 1; AMD1, adenosylmethionine decarboxylase 1; SRM, spermidine synthase; SMS, spermine synthase; SAT1, spermidine/spermine N1-acetyltransferase 1. (B) Dot plots illustrating HRs (95% CI) per unit increase in mRNA expression of PMEs, and PFS in The Cancer Genome Atlas (TCGA)-diffuse large B cell lymphoma (DLBCL) transcriptomic dataset and overall survival in the Lenz and Shipp B cell lymphoma transcriptomic datasets. (C) Kaplan-Meier survival curves for association between mRNA expression of SRM > or ≤ an optimal change point value, and PFS in the TCGA-DLBCL dataset and overall survival in the Lenz and Shipp B cell lymphoma datasets, respectively. (D) Dot plots illustrate spearman ρ coefficients (95% CI) for association between mRNA expression of PMEs ODC1, SRM, and SMS with gene-based signatures of immune-cell infiltrates and immune-checkpoint-blockade-related genes in the TCGA-DLBCL and Ma DLBCL transcriptomic datasets. Gene-based signatures were according to Bindea et al. ODC1, ornithine decarboxylase 1; AMD1, adenosylmethionine decarboxylase 1; SRM, spermidine synthase; SMS, spermine synthase; SAT1, spermidine/spermine N1-acetyltransferase 1.

References

    1. June C.H., Sadelain M. Chimeric antigen receptor therapy. N. Engl. J. Med. 2018;379:64–73. doi: 10.1056/NEJMra1706169.
    1. Neelapu S.S., Locke F.L., Bartlett N.L., Lekakis L.J., Miklos D.B., Jacobson C.A., Braunschweig I., Oluwole O.O., Siddiqi T., Lin Y., et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 2017;377:2531–2544. doi: 10.1056/NEJMoa1707447.
    1. Schuster S.J., Bishop M.R., Tam C.S., Waller E.K., Borchmann P., McGuirk J.P., Jäger U., Jaglowski S., Andreadis C., Westin J.R., et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 2019;380:45–56. doi: 10.1056/NEJMoa1804980.
    1. Abramson J.S., Palomba M.L., Gordon L.I., Lunning M.A., Wang M., Arnason J., Mehta A., Purev E., Maloney D.G., Andreadis C., et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396:839–852. doi: 10.1016/S0140-6736(20)31366-0.
    1. Vercellino L., Di Blasi R., Kanoun S., Tessoulin B., Rossi C., D'Aveni-Piney M., Obéric L., Bodet-Milin C., Bories P., Olivier P., et al. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 2020;4:5607–5615. doi: 10.1182/bloodadvances.2020003001.
    1. Jain M.D., Zhao H., Wang X., Atkins R., Menges M., Reid K., Spitler K., Faramand R., Bachmeier C., Dean E.A., et al. Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood. 2021;137:2621–2633. doi: 10.1182/blood.2020007445.
    1. Ott G., Rosenwald A., Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood. 2013;122:3884–3891. doi: 10.1182/blood-2013-05-498329.
    1. Ziepert M., Lazzi S., Santi R., Vergoni F., Granai M., Mancini V., Staiger A., Horn H., Löffler M., Pöschel V., et al. A 70% cut-off for MYC protein expression in diffuse large B cell lymphoma identifies a high-risk group of patients. Haematologica. 2020;105:2667–2670. doi: 10.3324/haematol.2019.235556.
    1. Jaeger U., Bishop M.R., Salles G., Schuster S.J., Maziarz R.T., Han X., Savchenko A., Roscoe N., Orlando E., Knoblock D., et al. Myc expression and tumor-infiltrating T cells are associated with response in patients (Pts) with relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL) treated with tisagenlecleucel in the juliet trial. Blood. 2020;136:48–49. doi: 10.1182/blood-2020-137045.
    1. Fahrmann J.F., Bantis L.E., Capello M., Scelo G., Dennison J.B., Patel N., Murage E., Vykoukal J., Kundnani D.L., Foretova L., et al. A plasma-derived protein-metabolite multiplexed panel for early-stage pancreatic cancer. J. Natl. Cancer Inst. 2019;111:372–379. doi: 10.1093/jnci/djy126.
    1. Fahrmann J.F., Vykoukal J., Fleury A., Tripathi S., Dennison J.B., Murage E., Wang P., Yu C.Y., Capello M., Creighton C.J., et al. Association between plasma diacetylspermine and tumor spermine synthase with outcome in triple-negative breast cancer. J. Natl. Cancer Inst. 2020;112:607–616. doi: 10.1093/jnci/djz182.
    1. Fahrmann J.F., Irajizad E., Kobayashi M., Vykoukal J., Dennison J.B., Murage E., Wu R., Long J.P., Do K.A., Celestino J., et al. A MYC-driven plasma polyamine signature for early detection of ovarian cancer. Cancers (Basel) 2021;13:913. doi: 10.3390/cancers13040913.
    1. Kühn T., Floegel A., Sookthai D., Johnson T., Rolle-Kampczyk U., Otto W., von Bergen M., Boeing H., Kaaks R. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med. 2016;14:13. doi: 10.1186/s12916-016-0552-3.
    1. Zhao Z., Xiao Y., Elson P., Tan H., Plummer S.J., Berk M., Aung P.P., Lavery I.C., Achkar J.P., Li L., et al. Plasma lysophosphatidylcholine levels: potential biomarkers for colorectal cancer. J. Clin. Oncol. 2007;25:2696–2701. doi: 10.1200/jco.2006.08.5571.
    1. Contal C., O'Quigley J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput. Stat. Data Anal. 1999;30:253–270.
    1. Basso K., Margolin A.A., Stolovitzky G., Klein U., Dalla-Favera R., Califano A. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 2005;37:382–390. doi: 10.1038/ng1532.
    1. Lenz G., Wright G., Dave S.S., Xiao W., Powell J., Zhao H., Xu W., Tan B., Goldschmidt N., Iqbal J., et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 2008;359:2313–2323. doi: 10.1056/NEJMoa0802885.
    1. Shipp M.A., Ross K.N., Tamayo P., Weng A.P., Kutok J.L., Aguiar R.C.T., Gaasenbeek M., Angelo M., Reich M., Pinkus G.S., et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 2002;8:68–74. doi: 10.1038/nm0102-68.
    1. Ma M.C.J., Tadros S., Bouska A., Heavican T.B., Yang H., Deng Q., Moore D., Akhter A., Hartert K., Jain N., et al. Pathognomonic and epistatic genetic alterations in B-cell non-Hodgkin lymphoma. bioRxiv. 2019:674259. doi: 10.1101/674259. Preprint at.
    1. Bindea G., Mlecnik B., Tosolini M., Kirilovsky A., Waldner M., Obenauf A.C., Angell H., Fredriksen T., Lafontaine L., Berger A., et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–795. doi: 10.1016/j.immuni.2013.10.003.
    1. Shah N.N., Fry T.J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 2019;16:372–385. doi: 10.1038/s41571-019-0184-6.
    1. Nastoupil L.J., Jain M.D., Feng L., Spiegel J.Y., Ghobadi A., Lin Y., Dahiya S., Lunning M., Lekakis L., Reagan P., et al. Standard-of-Care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T consortium. J. Clin. Oncol. 2020;38:3119–3128. doi: 10.1200/jco.19.02104.
    1. Thyss A., Milano G., Caldani C., Lesbats G., Schneider M., Lalanne C.M. Polyamines as biological markers in malignant lymphomas. Eur. J. Cancer Clin. Oncol. 1982;18:611–616. doi: 10.1016/0277-5379(82)90205-x.
    1. Flynn A.T., Hogarty M.D. Myc, oncogenic protein translation, and the role of polyamines. Med Sci (Basel) 2018;6 doi: 10.3390/medsci6020041.
    1. Coleman C.S., Stanley B.A., Jones A.D., Pegg A.E. Spermidine/spermine-N1-acetyltransferase-2 (SSAT2) acetylates thialysine and is not involved in polyamine metabolism. Biochem J. 2004;384:139–148. doi: 10.1042/bj20040790.
    1. Bonaventura P., Shekarian T., Alcazer V., Valladeau-Guilemond J., Valsesia-Wittmann S., Amigorena S., Caux C., Depil S. Cold tumors: a therapeutic challenge for immunotherapy. Front. Immunol. 2019;10:168. doi: 10.3389/fimmu.2019.00168.
    1. Majzner R.G., Mackall C.L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8:1219–1226. doi: 10.1158/-18-0442.
    1. Alexander E.T., Mariner K., Donnelly J., Phanstiel O., 4th, Gilmour S.K. Polyamine blocking therapy decreases survival of tumor-infiltrating immunosuppressive myeloid cells and enhances the antitumor efficacy of PD-1 blockade. Mol. Cancer Therapeut. 2020;19:2012–2022. doi: 10.1158/1535-7163.Mct-19-1116.
    1. Alexander E.T., Minton A., Peters M.C., Phanstiel O.t., Gilmour S.K. A novel polyamine blockade therapy activates an anti-tumor immune response. Oncotarget. 2017;8:84140–84152. doi: 10.18632/oncotarget.20493.
    1. Hayes C.S., Shicora A.C., Keough M.P., Snook A.E., Burns M.R., Gilmour S.K. Polyamine-blocking therapy reverses immunosuppression in the tumor microenvironment. Cancer Immunol. Res. 2014;2:274–285. doi: 10.1158/2326-6066.Cir-13-0120-t.
    1. Miska J., Rashidi A., Lee-Chang C., Gao P., Lopez-Rosas A., Zhang P., Burga R., Castro B., Xiao T., Han Y., et al. Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. Sci. Adv. 2021;7:eabc8929. doi: 10.1126/sciadv.abc8929.
    1. Edwards-Hicks J., Mitterer M., Pearce E.L., Buescher J.M. Metabolic dynamics of in vitro CD8+ T cell activation. Metabolites. 2021;11:12.
    1. O'Brien K.L., Assmann N., O'Connor E., Keane C., Walls J., Choi C., Oefner P.J., Gardiner C.M., Dettmer K., Finlay D.K. De novo polyamine synthesis supports metabolic and functional responses in activated murine NK cells. European Journal of Immunology. 2021;51:91–102.
    1. Puleston D.J., Baixauli F., Sanin D.E., Villa M., Kabat A., Kamiński M.M., Weiss H., Grzes K., Flachsmann L., Field C.S. Polyamine metabolism regulates the T cell epigenome through hypusination. bioRxiv. 2020 Preprint at.
    1. Sholler G.L.S., Ferguson W., Bergendahl G., Bond J.P., Neville K., Eslin D., Brown V., Roberts W., Wada R.K., Oesterheld J., et al. Maintenance DFMO increases survival in high risk neuroblastoma. Sci. Rep. 2018;8:14445. doi: 10.1038/s41598-018-32659-w.
    1. Samal K., Zhao P., Kendzicky A., Yco L.P., McClung H., Gerner E., Burns M., Bachmann A.S., Sholler G. AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport. Int. J. Cancer. 2013;133:1323–1333. doi: 10.1002/ijc.28139.
    1. Kamphorst J.J., Cross J.R., Fan J., de Stanchina E., Mathew R., White E.P., Thompson C.B., Rabinowitz J.D. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl. Acad. Sci. USA. 2013;110:8882–8887. doi: 10.1073/pnas.1307237110.
    1. Raynor A., Jantscheff P., Ross T., Schlesinger M., Wilde M., Haasis S., Dreckmann T., Bendas G., Massing U. Saturated and mono-unsaturated lysophosphatidylcholine metabolism in tumour cells: a potential therapeutic target for preventing metastases. Lipids Health Dis. 2015;14:69. doi: 10.1186/s12944-015-0070-x.
    1. Piccirillo A.R., Hyzny E.J., Beppu L.Y., Menk A.V., Wallace C.T., Hawse W.F., Buechel H.M., Wong B.H., Foo J.C., Cazenave-Gassiot A., et al. The lysophosphatidylcholine transporter MFSD2A is essential for CD8(+) memory T cell maintenance and secondary response to infection. J. Immunol. 2019;203:117–126. doi: 10.4049/jimmunol.1801585.
    1. Asaoka Y., Oka M., Yoshida K., Sasaki Y., Nishizuka Y. Role of lysophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase C. Proc. Natl. Acad. Sci. USA. 1992;89:6447–6451. doi: 10.1073/pnas.89.14.6447.
    1. Mollinedo F., de la Iglesia-Vicente J., Gajate C., Estella-Hermoso de Mendoza A., Villa-Pulgarin J.A., de Frias M., Roué G., Gil J., Colomer D., Campanero M.A., Blanco-Prieto M.J. In vitro and in vivo selective antitumor activity of Edelfosine against mantle cell lymphoma and chronic lymphocytic leukemia involving lipid rafts. Clin. Cancer Res. 2010;16:2046–2054. doi: 10.1158/1078-0432.Ccr-09-2456.
    1. Estella-Hermoso de Mendoza A., Campanero M.A., de la Iglesia-Vicente J., Gajate C., Mollinedo F., Blanco-Prieto M.J. Antitumor alkyl ether lipid edelfosine: tissue distribution and pharmacokinetic behavior in healthy and tumor-bearing immunosuppressed mice. Clin. Cancer Res. 2009;15:858–864. doi: 10.1158/1078-0432.Ccr-08-1654.
    1. Gajate C., Mollinedo F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood. 2007;109:711–719. doi: 10.1182/blood-2006-04-016824.
    1. Cheson B.D., Fisher R.I., Barrington S.F., Cavalli F., Schwartz L.H., Zucca E., Lister T.A., Alliance, Australasian Leukaemia and Lymphoma Group. Eastern Cooperative Oncology Group. European Mantle Cell Lymphoma Consortium Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J. Clin. Oncol. 2014;32:3059–3068. doi: 10.1200/jco.2013.54.8800.
    1. Neelapu S.S., Tummala S., Kebriaei P., Wierda W., Gutierrez C., Locke F.L., Komanduri K.V., Lin Y., Jain N., Daver N., et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018;15:47–62. doi: 10.1038/nrclinonc.2017.148.
    1. Vykoukal J., Fahrmann J.F., Gregg J.R., Tang Z., Basourakos S., Irajizad E., Park S., Yang G., Creighton C.J., Fleury A., et al. Caveolin-1-mediated sphingolipid oncometabolism underlies a metabolic vulnerability of prostate cancer. Nat. Commun. 2020;11:4279. doi: 10.1038/s41467-020-17645-z.
    1. Gao J., Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013;6:pl1. doi: 10.1126/scisignal.2004088.
    1. Rhodes D.R., Yu J., Shanker K., Deshpande N., Varambally R., Ghosh D., Barrette T., Pandey A., Chinnaiyan A.M. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6. doi: 10.1016/s1476-5586(04)80047-2.
    1. Friedman J., Hastie T., Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010;33:1–22.
    1. Grambsch P.M., Therneau T.M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81:515–526. doi: 10.1093/biomet/81.3.515.

Source: PubMed

Подписаться