Comparison of COPD Assessment Test and Clinical COPD Questionnaire to predict the risk of exacerbation

Yong Suk Jo, Ho Il Yoon, Deog Kyeom Kim, Chul-Gyu Yoo, Chang-Hoon Lee, Yong Suk Jo, Ho Il Yoon, Deog Kyeom Kim, Chul-Gyu Yoo, Chang-Hoon Lee

Abstract

Background and objective: Guidelines recommend the use of simple but comprehensive tools such as COPD Assessment Test (CAT) and Clinical COPD Questionnaire (CCQ) to assess health status in COPD patients. We aimed to compare the ability of CAT and CCQ to predict exacerbation in COPD patients.

Methods: We organized a multicenter prospective cohort study that included COPD patients. The relationships between CAT, CCQ, and other clinical measurements were analyzed by correlation analysis, and the impact of CAT and CCQ scores on exacerbation was analyzed by logistic regression analyses and receiver operating characteristic curve.

Results: Among 121 COPD patients, CAT and CCQ score correlated with other symptom measures, lung function and exercise capacity as well. Compared with patients who did not experience exacerbation, those who experienced exacerbation (n=45; 38.2%) exhibited more severe airflow limitation, were more likely to have a history of exacerbation in the year prior to enrollment, and demonstrated higher CAT scores. CCQ scores were not significantly associated with exacerbations. A CAT score of ≥15 was an independent risk factor for exacerbation (adjusted odds ratio [aOR], 2.40; 95% CI, 1.03-6.50; P=0.04). Furthermore, CAT scores of ≥15 demonstrated an increased predictive ability for exacerbation compared with currently accepted guidelines for the use of CAT (≥10) and CCQ (≥1) in the assessment of COPD patients (area under the curve for CAT ≥15, CAT ≥10, and CCQ ≥1 was 0.61±0.04, 0.53±0.03, and 0.50±0.03, respectively; P=0.03).

Conclusion: A CAT score of ≥15 indicates increased risk of exacerbation in COPD patients, whereas there is no evidence for increased risk based on CCQ score.

Keywords: COPD; exacerbation; questionnaire.

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
Flow diagram of the included study participants. Abbreviations: CAT, COPD Assessment Test; CCQ, Clinical COPD Questionnaire; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity.
Figure 2
Figure 2
Correlation of CAT and CCQ scores with SGRQ (A and D), FEV1% predicted (B and E), and 6MWD (C and F). Abbreviations: CAT, COPD Assessment Test; CCQ, Clinical COPD Questionnaire; FEV1, forced expiratory volume in 1 second; 6MWD, 6-minute walk distance; SGRQ, St George’s Respiratory Questionnaire.
Figure 3
Figure 3
The receiver operating characteristic curve to compare the prediction of exacerbation according to the different cutoff levels of symptom assessment tools. Abbreviations: CAT, COPD Assessment Test; CCQ, Clinical COPD Questionnaire.

References

    1. Donaldson G, Seemungal T, Bhowmik A, Wedzicha J. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002;57(10):847–852.
    1. Bang KM, Gergen PJ, Kramer R, Cohen B. The effect of pulmonary impairment on all-cause mortality in a national cohort. Chest. 1993;103(2):536–540.
    1. Cao Z, Ong KC, Eng P, Tan WC, Ng TP. Frequent hospital readmissions for acute exacerbation of COPD and their associated factors. Respirology. 2006;11(2):188–195.
    1. Jones PW. Health status and the spiral of decline. COPD. 2009;6(1):59–63.
    1. Han MK, Muellerova H, Curran-Everett D, et al. GOLD 2011 disease severity classification in COPDGene: a prospective cohort study. Lancet Respir Med. 2013;1(1):43–50.
    1. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557–582.
    1. Miravitlles M, Ferrer M, Pont A, et al. Effect of exacerbations on quality of life in patients with chronic obstructive pulmonary disease: a 2 year follow up study. Thorax. 2004;59(5):387–395.
    1. Soler-Cataluna J, Martínez-García MÁ, Sánchez PR, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005;60(11):925–931.
    1. Sullivan SD, Ramsey SD, Lee TA. The economic burden of COPD. Chest. 2000;117(2_suppl):5S–9S.
    1. Casanova C, Marin JM, Martinez-Gonzalez C, et al. Differential effect of modified medical research council dyspnea, COPD assessment test, and clinical COPD questionnaire for symptoms evaluation within the new GOLD staging and mortality in COPD. Chest. 2015;148(1):159–168.
    1. Lee C-H, Lee J, Park YS, et al. Chronic obstructive pulmonary disease (COPD) assessment test scores corresponding to modified Medical Research Council grades among COPD patients. Korean J Intern Med. 2015;30(5):629–637.
    1. Pinto LM, Gupta N, Tan W, et al. Derivation of normative data for the COPD assessment test (CAT) Respir Res. 2014;15:68.
    1. Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest. 2002;121(5):1434–1440.
    1. Domingo-Salvany A, Lamarca R, Ferrer M, et al. Health-related quality of life and mortality in male patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166(5):680–685.
    1. Hurst JR, Vestbo J, Anzueto A, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128–1138.
    1. Karloh M, Mayer AF, Maurici R, Pizzichini MM, Jones PW, Pizzichini E. The COPD assessment test: what do we know so far? A systematic review and meta-analysis about clinical outcomes prediction and classification of patients into GOLD stages. Chest. 2016;149(2):413–425.
    1. Sundh J, Janson C, Lisspers K, Montgomery S, Stallberg B. Clinical COPD Questionnaire score (CCQ) and mortality. Int J Chron Obstruct Pulmon Dis. 2012;7:833–842.
    1. Lung function testing: selection of reference values and interpretative strategies. American Thoracic Society. Am Rev Respir Dis. 1991;144(5):1202–1218.
    1. Wanger J, Clausen J, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26(3):511–522.
    1. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–117.
    1. Jones P, Harding G, Berry P, Wiklund I, Chen W, Leidy NK. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34(3):648–654.
    1. Kon SS, Canavan JL, Jones SE, et al. Minimum clinically important difference for the COPD Assessment Test: a prospective analysis. Lancet Respir Med. 2014;2(3):195–203.
    1. Gupta N, Pinto LM, Morogan A, Bourbeau J. The COPD assessment test: a systematic review. Eur Respir J. 2014;44(4):873–884.
    1. Hwang YI, Jung KS, Lim SY, Lee YS, Kwon NH. A validation study for the Korean version of chronic obstructive pulmonary disease assessment test (CAT) Tuberc Respir Dis. 2013;74(6):256–263.
    1. Van der Molen T, Willemse BW, Schokker S, Ten Hacken NH, Postma DS, Juniper EF. Development, validity and responsiveness of the Clinical COPD Questionnaire. Health Qual Life Outcomes. 2003;1(1):13.
    1. Kim SH, Oh YM, Jo MW. Health-related quality of life in chronic obstructive pulmonary disease patients in Korea. Health Qual Life Outcomes. 2014;12:57.
    1. CCQ [homepage on the Internet] CCQ Korean Version. [Accessed November 18, 2017]. Available from: .
    1. Kocks JW, Tuinenga MG, Uil SM, Van den Berg J, Ståhl E, Molen TD. Health status measurement in COPD: the minimal clinically important difference of the clinical COPD questionnaire. Respir Res. 2006;7(1):62.
    1. Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. Am Rev Respir Dis. 1992;145(6):1321–1327.
    1. Ferrer M, Alonso J, Prieto L, et al. Validity and reliability of the St George’s Respiratory Questionnaire after adaptation to a different language and culture: the Spanish example. Eur Respir J. 1996;9(6):1160–1166.
    1. Jones P, Brusselle G, Dal Negro R, et al. Properties of the COPD assessment test in a cross-sectional European study. Eur Respir J. 2011;38(1):29–35.
    1. Ringbaek T, Martinez G, Lange P. A comparison of the assessment of quality of life with CAT, CCQ, and SGRQ in COPD patients participating in pulmonary rehabilitation. COPD. 2012;9(1):12–15.
    1. Tsiligianni IG, van der Molen T, Moraitaki D, et al. Assessing health status in COPD. A head-to-head comparison between the COPD assessment test (CAT) and the clinical COPD questionnaire (CCQ) BMC Pulm Med. 2012;12:20.
    1. Dodd JW, Hogg L, Nolan J, et al. The COPD assessment test (CAT): response to pulmonary rehabilitation. A multicentre, prospective study. Thorax. 2011;66(5):425–429.
    1. Sundh J, Ställberg B, Lisspers K, Kämpe M, Janson C, Montgomery S. Comparison of the COPD assessment test (CAT) and the clinical COPD questionnaire (CCQ) in a clinical population. COPD. 2016;13(1):57–65.
    1. Cave AJ, Atkinson L, Tsiligianni IG, Kaplan AG. Assessment of COPD wellness tools for use in primary care: an IPCRG initiative. Int J Chron Obstruct Pulmon Dis. 2012;7:447–456.
    1. Briggs A, Spencer M, Wang H, Mannino D, Sin DD. Development and validation of a prognostic index for health outcomes in chronic obstructive pulmonary disease. Arch Intern Med. 2008;168(1):71–79.
    1. Cleland JA, Lee AJ, Hall S. Associations of depression and anxiety with gender, age, health-related quality of life and symptoms in primary care COPD patients. Fam Pract. 2007;24(3):217–223.

Source: PubMed

Подписаться