Transcriptomics-based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation

Jessica C Lal, Chengsheng Mao, Yadi Zhou, Shamone R Gore-Panter, Julie H Rennison, Beth S Lovano, Laurie Castel, Jiyoung Shin, A Marc Gillinov, Jonathan D Smith, John Barnard, David R Van Wagoner, Yuan Luo, Feixiong Cheng, Mina K Chung, Jessica C Lal, Chengsheng Mao, Yadi Zhou, Shamone R Gore-Panter, Julie H Rennison, Beth S Lovano, Laurie Castel, Jiyoung Shin, A Marc Gillinov, Jonathan D Smith, John Barnard, David R Van Wagoner, Yuan Luo, Feixiong Cheng, Mina K Chung

Abstract

Effective drugs for atrial fibrillation (AF) are lacking, resulting in significant morbidity and mortality. This study demonstrates that network proximity analysis of differentially expressed genes from atrial tissue to drug targets can help prioritize repurposed drugs for AF. Using enrichment analysis of drug-gene signatures and functional testing in human inducible pluripotent stem cell (iPSC)-derived atrial-like cardiomyocytes, we identify metformin as a top repurposed drug candidate for AF. Using the active compactor, a new design analysis of large-scale longitudinal electronic health record (EHR) data, we determine that metformin use is significantly associated with a reduced risk of AF (odds ratio = 0.48, 95%, confidence interval [CI] 0.36-0.64, p < 0.001) compared with standard treatments for diabetes. This study utilizes network medicine methodologies to identify repurposed drugs for AF treatment and identifies metformin as a candidate drug.

Keywords: EHR; atrial fibrillation; drug repurposing; electronic health record; human inducible pluripotent stem cells; network medicine; pharmacoepidemiology; systems biology.

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Study overview (A) We utilized a systems pharmacology-based network medicine platform to quantify the proximity of interactions between the atrial fibrillation (AF) interactome nodes and drug targets in the PPI network. (B) GSEA of known targets are used to validate the in silico approach and nominate candidate drugs. (C and D) Using human induced pluripotent stem cell-derived atrial-like cardiomyocytes (a-iCMs; C) as well as large-scale pharmacoepidemiologic analysis (D), we are able to validate metformin as a repurposed drug for AF. Created with BioRender.com.
Figure 2
Figure 2
The atrial fibrillation interactome The network highlights the atrial fibrillation (AF) interactome that connects 245 AF enriched genes. Node size is proportional to −log10 p value, and color corresponds to log2 fold change (log2FC) in AF compared with sinus rhythm (STAR Methods). The AF disease module (defined by the largest connected component in the human interactome) shown includes 245 unique proteins (nodes) and 350 PPIs (edges). ∗p 

Figure 3

Network medicine applied to AF…

Figure 3

Network medicine applied to AF drug repurposing (A) A subnetwork is shown to…

Figure 3
Network medicine applied to AF drug repurposing (A) A subnetwork is shown to highlight the 54 candidate drugs associated with AF DEGs and their associated targets. Node size is proportional to Z score. Drugs are colored by their first-level anatomical therapeutic chemical (ATC) classification. (B–E) Four candidate drugs with gene set enrichment analysis (GSEA) ES > 0 and p 

Figure 4

Validation of the AF repurposed…

Figure 4

Validation of the AF repurposed drug candidate metformin using a-iCMs (A) A subnetwork…

Figure 4
Validation of the AF repurposed drug candidate metformin using a-iCMs (A) A subnetwork of metformin, drug targets, and PPI neighbors. The node color corresponds to the expected effect of metformin on target expression; green indicates agonist, and red indicates antagonist. (B) DE genes of a-iCMs treated with metformin (n = 3) or water (n = 3) for 30 h. Data are expressed as FC, with red designating increased expression and blue decreased expression. All experimental combinations had 3 replicates. (C) A subnetwork representing the significant differentially expressed genes (DEGs) and their PPI neighbors (gray). The node size is proportional to −log10 p value, and color corresponds to log2FC in metformin-treated a-iCMs versus the control after 1-Hz pacing stimulation. See also Figures S3, S4, and S5 and Tables S2 and S9.

Figure 5

Subnetworks of upregulated and downregulated…

Figure 5

Subnetworks of upregulated and downregulated genes after metformin treatment in a-iCMs The central…

Figure 5
Subnetworks of upregulated and downregulated genes after metformin treatment in a-iCMs The central node color corresponds to upregulated (green) or downregulated (red) genes after metformin treatment in pacing a-iCMS. Outer node colors correspond to KEGG pathway classification, and class is listed next to each pathway cluster. See also Table S9.

Figure 6

Pharmacoepidemiologic validation of metformin in…

Figure 6

Pharmacoepidemiologic validation of metformin in reducing AF occurrence (A–D) OR and 95% confidence…

Figure 6
Pharmacoepidemiologic validation of metformin in reducing AF occurrence (A–D) OR and 95% confidence interval (CI) for metformin versus (A) combination of the four drug groups (all, dipeptidyl-peptidase 4 sulfonylurea [DPP4], thiazolidinedione [TZD], sulfonylurea, and glucagon-like peptide 1 receptor agonist [GLP1RA]) (n = 3,578), (B) DPP4 (n = 1,244), (C) sulfonylurea (n = 2,352), and (D) TZD (n = 288). For each of the four comparisons, the results for comparisons between subgroups (including female, male, Black, and White) are also shown. Patient groups were matched using PS matching with the variables age, gender, race, and comorbidities (listed in Table 1) for the overall group comparisons. For the subgroup of male and female, the matching variables excluded gender, and for the subgroup Black and White, the matching variables excluded race. Logistic regression models were used for statistical inference of the AF ORs. Subgroup analyses were performed in females (orange), males (green), Black Americans (dark green), and White Americans (blue). ∗p 
All figures (7)
Comment in
Similar articles
Cited by
References
    1. Michaud G.F., Stevenson W.G. Atrial fibrillation. N. Engl. J. Med. 2021;384:353–361. doi: 10.1056/NEJMcp2023658. - DOI - PubMed
    1. Piccini J.P., Hammill B.G., Sinner M.F., Jensen P.N., Hernandez A.F., Heckbert S.R., Benjamin E.J., Curtis L.H. Incidence and prevalence of atrial fibrillation and associated mortality among Medicare beneficiaries, 1993-2007. Circ. Cardiovasc. Qual. Outcomes. 2012;5:85–93. doi: 10.1161/circoutcomes.111.962688. - DOI - PMC - PubMed
    1. Wilke T., Groth A., Mueller S., Pfannkuche M., Verheyen F., Linder R., Maywald U., Bauersachs R., Breithardt G. Incidence and prevalence of atrial fibrillation: an analysis based on 8.3 million patients. Europace. 2013;15:486–493. doi: 10.1093/europace/eus333. - DOI - PubMed
    1. Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Das S.R., et al. Heart disease and stroke statistics-2019 update: a report from the American heart association. Circulation. 2019;139:e56–e528. doi: 10.1161/cir.0000000000000659. - DOI - PubMed
    1. Samol A., Masin M., Gellner R., Otte B., Pavenstädt H.J., Ringelstein E.B., Reinecke H., Waltenberger J., Kirchhof P. Prevalence of unknown atrial fibrillation in patients with risk factors. Europace. 2013;15:657–662. doi: 10.1093/europace/eus366. - DOI - PubMed
Show all 102 references
Publication types
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 3
Figure 3
Network medicine applied to AF drug repurposing (A) A subnetwork is shown to highlight the 54 candidate drugs associated with AF DEGs and their associated targets. Node size is proportional to Z score. Drugs are colored by their first-level anatomical therapeutic chemical (ATC) classification. (B–E) Four candidate drugs with gene set enrichment analysis (GSEA) ES > 0 and p 

Figure 4

Validation of the AF repurposed…

Figure 4

Validation of the AF repurposed drug candidate metformin using a-iCMs (A) A subnetwork…

Figure 4
Validation of the AF repurposed drug candidate metformin using a-iCMs (A) A subnetwork of metformin, drug targets, and PPI neighbors. The node color corresponds to the expected effect of metformin on target expression; green indicates agonist, and red indicates antagonist. (B) DE genes of a-iCMs treated with metformin (n = 3) or water (n = 3) for 30 h. Data are expressed as FC, with red designating increased expression and blue decreased expression. All experimental combinations had 3 replicates. (C) A subnetwork representing the significant differentially expressed genes (DEGs) and their PPI neighbors (gray). The node size is proportional to −log10 p value, and color corresponds to log2FC in metformin-treated a-iCMs versus the control after 1-Hz pacing stimulation. See also Figures S3, S4, and S5 and Tables S2 and S9.

Figure 5

Subnetworks of upregulated and downregulated…

Figure 5

Subnetworks of upregulated and downregulated genes after metformin treatment in a-iCMs The central…

Figure 5
Subnetworks of upregulated and downregulated genes after metformin treatment in a-iCMs The central node color corresponds to upregulated (green) or downregulated (red) genes after metformin treatment in pacing a-iCMS. Outer node colors correspond to KEGG pathway classification, and class is listed next to each pathway cluster. See also Table S9.

Figure 6

Pharmacoepidemiologic validation of metformin in…

Figure 6

Pharmacoepidemiologic validation of metformin in reducing AF occurrence (A–D) OR and 95% confidence…

Figure 6
Pharmacoepidemiologic validation of metformin in reducing AF occurrence (A–D) OR and 95% confidence interval (CI) for metformin versus (A) combination of the four drug groups (all, dipeptidyl-peptidase 4 sulfonylurea [DPP4], thiazolidinedione [TZD], sulfonylurea, and glucagon-like peptide 1 receptor agonist [GLP1RA]) (n = 3,578), (B) DPP4 (n = 1,244), (C) sulfonylurea (n = 2,352), and (D) TZD (n = 288). For each of the four comparisons, the results for comparisons between subgroups (including female, male, Black, and White) are also shown. Patient groups were matched using PS matching with the variables age, gender, race, and comorbidities (listed in Table 1) for the overall group comparisons. For the subgroup of male and female, the matching variables excluded gender, and for the subgroup Black and White, the matching variables excluded race. Logistic regression models were used for statistical inference of the AF ORs. Subgroup analyses were performed in females (orange), males (green), Black Americans (dark green), and White Americans (blue). ∗p 
All figures (7)
Comment in
Similar articles
Cited by
References
    1. Michaud G.F., Stevenson W.G. Atrial fibrillation. N. Engl. J. Med. 2021;384:353–361. doi: 10.1056/NEJMcp2023658. - DOI - PubMed
    1. Piccini J.P., Hammill B.G., Sinner M.F., Jensen P.N., Hernandez A.F., Heckbert S.R., Benjamin E.J., Curtis L.H. Incidence and prevalence of atrial fibrillation and associated mortality among Medicare beneficiaries, 1993-2007. Circ. Cardiovasc. Qual. Outcomes. 2012;5:85–93. doi: 10.1161/circoutcomes.111.962688. - DOI - PMC - PubMed
    1. Wilke T., Groth A., Mueller S., Pfannkuche M., Verheyen F., Linder R., Maywald U., Bauersachs R., Breithardt G. Incidence and prevalence of atrial fibrillation: an analysis based on 8.3 million patients. Europace. 2013;15:486–493. doi: 10.1093/europace/eus333. - DOI - PubMed
    1. Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Das S.R., et al. Heart disease and stroke statistics-2019 update: a report from the American heart association. Circulation. 2019;139:e56–e528. doi: 10.1161/cir.0000000000000659. - DOI - PubMed
    1. Samol A., Masin M., Gellner R., Otte B., Pavenstädt H.J., Ringelstein E.B., Reinecke H., Waltenberger J., Kirchhof P. Prevalence of unknown atrial fibrillation in patients with risk factors. Europace. 2013;15:657–662. doi: 10.1093/europace/eus366. - DOI - PubMed
Show all 102 references
Publication types
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 4
Figure 4
Validation of the AF repurposed drug candidate metformin using a-iCMs (A) A subnetwork of metformin, drug targets, and PPI neighbors. The node color corresponds to the expected effect of metformin on target expression; green indicates agonist, and red indicates antagonist. (B) DE genes of a-iCMs treated with metformin (n = 3) or water (n = 3) for 30 h. Data are expressed as FC, with red designating increased expression and blue decreased expression. All experimental combinations had 3 replicates. (C) A subnetwork representing the significant differentially expressed genes (DEGs) and their PPI neighbors (gray). The node size is proportional to −log10 p value, and color corresponds to log2FC in metformin-treated a-iCMs versus the control after 1-Hz pacing stimulation. See also Figures S3, S4, and S5 and Tables S2 and S9.
Figure 5
Figure 5
Subnetworks of upregulated and downregulated genes after metformin treatment in a-iCMs The central node color corresponds to upregulated (green) or downregulated (red) genes after metformin treatment in pacing a-iCMS. Outer node colors correspond to KEGG pathway classification, and class is listed next to each pathway cluster. See also Table S9.
Figure 6
Figure 6
Pharmacoepidemiologic validation of metformin in reducing AF occurrence (A–D) OR and 95% confidence interval (CI) for metformin versus (A) combination of the four drug groups (all, dipeptidyl-peptidase 4 sulfonylurea [DPP4], thiazolidinedione [TZD], sulfonylurea, and glucagon-like peptide 1 receptor agonist [GLP1RA]) (n = 3,578), (B) DPP4 (n = 1,244), (C) sulfonylurea (n = 2,352), and (D) TZD (n = 288). For each of the four comparisons, the results for comparisons between subgroups (including female, male, Black, and White) are also shown. Patient groups were matched using PS matching with the variables age, gender, race, and comorbidities (listed in Table 1) for the overall group comparisons. For the subgroup of male and female, the matching variables excluded gender, and for the subgroup Black and White, the matching variables excluded race. Logistic regression models were used for statistical inference of the AF ORs. Subgroup analyses were performed in females (orange), males (green), Black Americans (dark green), and White Americans (blue). ∗p 
All figures (7)

References

    1. Michaud G.F., Stevenson W.G. Atrial fibrillation. N. Engl. J. Med. 2021;384:353–361. doi: 10.1056/NEJMcp2023658.
    1. Piccini J.P., Hammill B.G., Sinner M.F., Jensen P.N., Hernandez A.F., Heckbert S.R., Benjamin E.J., Curtis L.H. Incidence and prevalence of atrial fibrillation and associated mortality among Medicare beneficiaries, 1993-2007. Circ. Cardiovasc. Qual. Outcomes. 2012;5:85–93. doi: 10.1161/circoutcomes.111.962688.
    1. Wilke T., Groth A., Mueller S., Pfannkuche M., Verheyen F., Linder R., Maywald U., Bauersachs R., Breithardt G. Incidence and prevalence of atrial fibrillation: an analysis based on 8.3 million patients. Europace. 2013;15:486–493. doi: 10.1093/europace/eus333.
    1. Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Das S.R., et al. Heart disease and stroke statistics-2019 update: a report from the American heart association. Circulation. 2019;139:e56–e528. doi: 10.1161/cir.0000000000000659.
    1. Samol A., Masin M., Gellner R., Otte B., Pavenstädt H.J., Ringelstein E.B., Reinecke H., Waltenberger J., Kirchhof P. Prevalence of unknown atrial fibrillation in patients with risk factors. Europace. 2013;15:657–662. doi: 10.1093/europace/eus366.
    1. Benjamin E.J., Wolf P.A., D'Agostino R.B., Silbershatz H., Kannel W.B., Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98:946–952. doi: 10.1161/01.cir.98.10.946.
    1. Agarwal M., Apostolakis S., Lane D.A., Lip G.Y.H. The impact of heart failure and left ventricular dysfunction in predicting stroke, thromboembolism, and mortality in atrial fibrillation patients: a systematic Review. Clin. Therapeut. 2014;36:1135–1144. doi: 10.1016/j.clinthera.2014.07.015.
    1. Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomström-Lundqvist C., Boriani G., Castella M., Dan G.-A., Dilaveris P.E., et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2020;42:373–498. doi: 10.1093/eurheartj/ehaa612.
    1. Kim M.H., Johnston S.S., Chu B.C., Dalal M.R., Schulman K.L. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ. Cardiovasc. Qual. Outcomes. 2011;4:313–320. doi: 10.1161/circoutcomes.110.958165.
    1. Prystowsky E.N., Benson D.W., Fuster V., Hart R.G., Kay G.N., Myerburg R.J., Naccarelli G.V., Wyse D.G. Management of patients with atrial fibrillation. Circulation. 1996;93:1262–1277. doi: 10.1161/01.CIR.93.6.1262.
    1. Pollak P. Clinical organ toxicity of antiarrhythmic compounds: ocular and pulmonary manifestations. Am. J. Cardiol. 1999;84:37–45. doi: 10.1016/S0002-9149(99)00700-6.
    1. Zimetbaum P. Antiarrhythmic drug therapy for atrial fibrillation. Circulation. 2012;125:381–389. doi: 10.1161/CIRCULATIONAHA.111.019927.
    1. Kottkamp H., Bender R., Berg J. Catheter ablation of atrial fibrillation. J. Am. Coll. Cardiol. 2015;65:196–206. doi: 10.1016/j.jacc.2014.10.034.
    1. Ouyang F., Antz M., Ernst S., Hachiya H., Mavrakis H., Deger F.T., Schaumann A., Chun J., Falk P., Hennig D., et al. Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachyarrhythmias after complete circular isolation of the pulmonary veins. Circulation. 2005;111:127–135. doi: 10.1161/01.CIR.0000151289.73085.36.
    1. Roselli C., Chaffin M.D., Weng L.C., Aeschbacher S., Ahlberg G., Albert C.M., Almgren P., Alonso A., Anderson C.D., Aragam K.G., et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 2018;50:1225–1233. doi: 10.1038/s41588-018-0133-9.
    1. Menche J., Sharma A., Kitsak M., Ghiassian S.D., Vidal M., Loscalzo J., Barabási A.L. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science. 2015;347:1257601. doi: 10.1126/science.1257601.
    1. Barabási A.L., Gulbahce N., Loscalzo J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 2011;12:56–68. doi: 10.1038/nrg2918.
    1. Fang J., Zhang P., Zhou Y., Chiang C.-W., Tan J., Hou Y., Stauffer S., Li L., Pieper A.A., Cummings J., Cheng F. Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer’s disease. Nat. Aging. 2021;1:1175–1188. doi: 10.1038/s43587-021-00138-z.
    1. Zhou Y., Hou Y., Shen J., Mehra R., Kallianpur A., Culver D.A., Gack M.U., Farha S., Zein J., Comhair S., et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 2020;18:e3000970. doi: 10.1371/journal.pbio.3000970.
    1. Zhou Y., Hou Y., Shen J., Huang Y., Martin W., Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14. doi: 10.1038/s41421-020-0153-3.
    1. Guney E., Menche J., Vidal M., Barábasi A.L. Network-based in silico drug efficacy screening. Nat. Commun. 2016;7:10331. doi: 10.1038/ncomms10331.
    1. Huang Y., Fang J., Lu W., Wang Z., Wang Q., Hou Y., Jiang X., Reizes O., Lathia J., Nussinov R., et al. A systems pharmacology approach uncovers wogonoside as an angiogenesis inhibitor of triple-negative breast cancer by targeting hedgehog signaling. Cell Chem. Biol. 2019;26:1143–1158.e6. doi: 10.1016/j.chembiol.2019.05.004.
    1. Fiscon G., Conte F., Amadio S., Volonté C., Paci P. Drug repurposing: a network-based approach to amyotrophic lateral sclerosis. Neurotherapeutics. 2021;18:1678–1691. doi: 10.1007/s13311-021-01064-z.
    1. Cheng F., Lu W., Liu C., Fang J., Hou Y., Handy D.E., Wang R., Zhao Y., Yang Y., Huang J., et al. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat. Commun. 2019;10:3476. doi: 10.1038/s41467-019-10744-6.
    1. Cheng F., Desai R.J., Handy D.E., Wang R., Schneeweiss S., Barabási A.L., Loscalzo J. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun. 2018;9:2691. doi: 10.1038/s41467-018-05116-5.
    1. Morselli Gysi D., do Valle Í., Zitnik M., Ameli A., Gan X., Varol O., Ghiassian S.D., Patten J.J., Davey R.A., Loscalzo J., Barabási A.L. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2025581118. e2025581118.
    1. Fiscon G., Conte F., Farina L., Paci P. SAveRUNNER: a network-based algorithm for drug repurposing and its application to COVID-19. PLoS Comput. Biol. 2021;17:e1008686. doi: 10.1371/journal.pcbi.1008686.
    1. Cheng F., Kovács I.A., Barabási A.L. Network-based prediction of drug combinations. Nat. Commun. 2019;10:1197. doi: 10.1038/s41467-019-09186-x.
    1. Greene J.A., Loscalzo J. Putting the patient back together - social medicine, network medicine, and the limits of reductionism. N. Engl. J. Med. 2017;377:2493–2499. doi: 10.1056/NEJMms1706744.
    1. Xu J., Zhang P., Huang Y., Zhou Y., Hou Y., Bekris L.M., Lathia J., Chiang C.W., Li L., Pieper A.A., et al. Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer's disease. Genome Res. 2021;31:1900–1912. doi: 10.1101/gr.272484.120.
    1. Cheng F., Zhao J., Wang Y., Lu W., Liu Z., Zhou Y., Martin W.R., Wang R., Huang J., Hao T., et al. Comprehensive characterization of protein–protein interactions perturbed by disease mutations. Nat. Genet. 2021;53:342–353. doi: 10.1038/s41588-020-00774-y.
    1. Wishart D.S., Knox C., Guo A.C., Shrivastava S., Hassanali M., Stothard P., Chang Z., Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668–D672. doi: 10.1093/nar/gkj067.
    1. Lamb J., Crawford E.D., Peck D., Modell J.W., Blat I.C., Wrobel M.J., Lerner J., Brunet J.P., Subramanian A., Ross K.N., et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–1935. doi: 10.1126/science.1132939.
    1. Cooper D.N., Ball E.V., Krawczak M. The human gene mutation database. Nucleic Acids Res. 1998;26:285–287. doi: 10.1093/nar/26.1.285.
    1. Song E., Wang R.S., Leopold J.A., Loscalzo J. Network determinants of cardiovascular calcification and repositioned drug treatments. Faseb. J. 2020;34:11087–11100. doi: 10.1096/fj.202001062R.
    1. Paci P., Fiscon G., Conte F., Wang R.S., Handy D.E., Farina L., Loscalzo J. Comprehensive network medicine-based drug repositioning via integration of therapeutic efficacy and side effects. NPJ Syst. Biol. Appl. 2022;8:12. doi: 10.1038/s41540-022-00221-0.
    1. Shah S., Henry A., Roselli C., Lin H., Sveinbjörnsson G., Fatemifar G., Hedman Å.K., Wilk J.B., Morley M.P., Chaffin M.D., et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 2020;11:163. doi: 10.1038/s41467-019-13690-5.
    1. Diogo D., Tian C., Franklin C.S., Alanne-Kinnunen M., March M., Spencer C.C.A., Vangjeli C., Weale M.E., Mattsson H., Kilpeläinen E., et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat. Commun. 2018;9:4285. doi: 10.1038/s41467-018-06540-3.
    1. Divorty N., Milligan G., Graham D., Nicklin S.A. The orphan receptor GPR35 contributes to angiotensin II-induced hypertension and cardiac dysfunction in mice. Am. J. Hypertens. 2018;31:1049–1058. doi: 10.1093/ajh/hpy073.
    1. Yang X., Li G., Yang T., Guan M., An N., Yang F., Dai Q., Zhong C., Luo C., Gao Y., et al. Possible susceptibility genes for intervention against chemotherapy-induced cardiotoxicity. Oxid. Med. Cell. Longev. 2020;2020:4894625. doi: 10.1155/2020/4894625.
    1. Shahid F., Lip G.Y.H., Shantsila E. Role of monocytes in heart failure and atrial fibrillation. J. Am. Heart Assoc. 2018;7:e007849. doi: 10.1161/JAHA.117.007849.
    1. Harada M., Van Wagoner D.R., Nattel S. Role of inflammation in atrial fibrillation pathophysiology and management. Circ. J. 2015;79:495–502. doi: 10.1253/circj.CJ-15-0138.
    1. Yao C., Veleva T., Scott L., Jr., Cao S., Li L., Chen G., Jeyabal P., Pan X., Alsina K.M., Abu-Taha I., Dr, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation. 2018;138:2227–2242. doi: 10.1161/circulationaha.118.035202.
    1. Rennison J.H., Li L., Lin C.R., Lovano B.S., Castel L., Wass S.Y., Cantlay C.C., McHale M., Gillinov A.M., Mehra R., et al. Atrial fibrillation rhythm is associated with marked changes in metabolic and myofibrillar protein expression in left atrial appendage. Pflügers Archiv. 2021;473:461–475. doi: 10.1007/s00424-021-02514-5.
    1. Benjamin E.J., Levy D., Vaziri S.M., D'Agostino R.B., Belanger A.J., Wolf P.A. Independent risk factors for atrial fibrillation in a population-based cohort: the framingham heart study. JAMA. 1994;271:840–844. doi: 10.1001/jama.1994.03510350050036.
    1. Xiong Z., Liu T., Tse G., Gong M., Gladding P.A., Smaill B.H., Stiles M.K., Gillis A.M., Zhao J. A machine learning aided systematic Review and meta-analysis of the relative risk of atrial fibrillation in patients with diabetes mellitus. Front. Physiol. 2018;9:835. doi: 10.3389/fphys.2018.00835.
    1. Dublin S., Glazer N.L., Smith N.L., Psaty B.M., Lumley T., Wiggins K.L., Page R.L., Heckbert S.R. Diabetes mellitus, glycemic control, and risk of atrial fibrillation. J. Gen. Intern. Med. 2010;25:853–858. doi: 10.1007/s11606-010-1340-y.
    1. Chang S.-H., Wu L.-S., Chiou M.-J., Liu J.-R., Yu K.-H., Kuo C.-F., Wen M.-S., Chen W.-J., Yeh Y.-H., See L.-C. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc. Diabetol. 2014;13:123. doi: 10.1186/s12933-014-0123-x.
    1. Dyck J.R.B., Lopaschuk G.D. AMPK alterations in cardiac physiology and pathology: enemy or ally? J. Physiol. 2006;574:95–112. doi: 10.1113/jphysiol.2006.109389.
    1. Ball J., Løchen M.L., Wilsgaard T., Schirmer H., Hopstock L.A., Morseth B., Mathiesen E.B., Njølstad I., Tiwari S., Sharashova E. Sex differences in the impact of body mass index on the risk of future atrial fibrillation: insights from the longitudinal population-based tromsø study. J. Am. Heart Assoc. 2018;7:e008414. doi: 10.1161/jaha.117.008414.
    1. Huxley R.R., Lopez F.L., Folsom A.R., Agarwal S.K., Loehr L.R., Soliman E.Z., Maclehose R., Konety S., Alonso A. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2011;123:1501–1508. doi: 10.1161/circulationaha.110.009035.
    1. Schnabel R.B., Yin X., Gona P., Larson M.G., Beiser A.S., McManus D.D., Newton-Cheh C., Lubitz S.A., Magnani J.W., Ellinor P.T., et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386:154–162. doi: 10.1016/S0140-6736(14)61774-8.
    1. Bose A., O'Neal W.T., Wu C., McClure L.A., Judd S.E., Howard V.J., Howard G., Soliman E.Z. Sex differences in risk factors for incident atrial fibrillation (from the reasons for geographic and racial differences in stroke [REGARDS] study) Am. J. Cardiol. 2019;123:1453–1457. doi: 10.1016/j.amjcard.2019.01.056.
    1. Lipworth L., Okafor H., Mumma M.T., Edwards T.L., Roden D.M., Blot W.J., Darbar D. Race-specific impact of atrial fibrillation risk factors in blacks and whites in the southern community cohort study. Am. J. Cardiol. 2012;110:1637–1642. doi: 10.1016/j.amjcard.2012.07.032.
    1. Roberts J.D., Hu D., Heckbert S.R., Alonso A., Dewland T.A., Vittinghoff E., Liu Y., Psaty B.M., Olgin J.E., Magnani J.W., et al. Genetic investigation into the differential risk of atrial fibrillation among black and white individuals. JAMA Cardiol. 2016;1:442–450. doi: 10.1001/jamacardio.2016.1185.
    1. Delaney J.T., Jeff J.M., Brown N.J., Pretorius M., Okafor H.E., Darbar D., Roden D.M., Crawford D.C. Characterization of genome-wide association-identified variants for atrial fibrillation in African Americans. PLoS One. 2012;7:e32338. doi: 10.1371/journal.pone.0032338.
    1. Huang Y., Wang C., Yao Y., Zuo X., Chen S., Xu C., Zhang H., Lu Q., Chang L., Wang F., et al. Molecular basis of gene-gene interaction: cyclic cross-regulation of gene expression and post-GWAS gene-gene interaction involved in atrial fibrillation. PLoS Genet. 2015;11:e1005393. doi: 10.1371/journal.pgen.1005393.
    1. Ghiassian S.D., Menche J., Barabási A.L. A DIseAse MOdule detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome. PLoS Comput. Biol. 2015;11:e1004120. doi: 10.1371/journal.pcbi.1004120.
    1. Oliveira S.M.J., Ehtisham J., Redwood C.S., Ostman-Smith I., Blair E.M., Watkins H. Mutation analysis of AMP-activated protein kinase subunits in inherited cardiomyopathies: implications for kinase function and disease pathogenesis. J. Mol. Cell. Cardiol. 2003;35:1251–1255. doi: 10.1016/s0022-2828(03)00237-2.
    1. Mihaylova M.M., Shaw R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011;13:1016–1023. doi: 10.1038/ncb2329.
    1. Dyck J.R., Kudo N., Barr A.J., Davies S.P., Hardie D.G., Lopaschuk G.D. Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5'-AMP activated protein kinase. Eur. J. Biochem. 1999;262:184–190. doi: 10.1046/j.1432-1327.1999.00371.x.
    1. Wang Q., Zhang M., Torres G., Wu S., Ouyang C., Xie Z., Zou M.-H. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of drp1-mediated mitochondrial fission. Diabetes. 2017;66:193–205. doi: 10.2337/db16-0915.
    1. Song Y.M., Lee W.K., Lee Y.H., Kang E.S., Cha B.S., Lee B.W. Metformin restores parkin-mediated mitophagy, suppressed by cytosolic p53. Int. J. Mol. Sci. 2016;17:E122. doi: 10.3390/ijms17010122.
    1. Li J., Wang Y., Wang Y., Wen X., Ma X.-N., Chen W., Huang F., Kou J., Qi L.-W., Liu B., Liu K. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J. Mol. Cell. Cardiol. 2015;86:62–74. doi: 10.1016/j.yjmcc.2015.07.010.
    1. Dai S., Tang Z., Cao J., Zhou W., Li H., Sampson S., Dai C. Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK. EMBO J. 2015;34:275–293. doi: 10.15252/embj.201489062.
    1. Zhuo X.Z., Wu Y., Ni Y.J., Liu J.H., Gong M., Wang X.H., Wei F., Wang T.Z., Yuan Z., Ma A.Q., Song P. Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis. 2013;18:800–810. doi: 10.1007/s10495-013-0843-5.
    1. Zhao F., Zhang S., Shao Y., Wu Y., Qin J., Chen Y., Chen L., Gu H., Wang X., Huang C., Zhang W. Calreticulin overexpression correlates with integrin-α5 and transforming growth factor-β1 expression in the atria of patients with rheumatic valvular disease and atrial fibrillation. Int. J. Cardiol. 2013;168:2177–2185. doi: 10.1016/j.ijcard.2013.01.239.
    1. Wang Y., Hou X., Li Y. Association between transforming growth factor β1 polymorphisms and atrial fibrillation in essential hypertensive subjects. J. Biomed. Sci. 2010;17:23. doi: 10.1186/1423-0127-17-23.
    1. Liew R., Khairunnisa K., Gu Y., Tee N., Yin N.O., Naylynn T.M., Moe K.T. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate. Circ. J. 2013;77:1171–1179. doi: 10.1253/circj.CJ-12-1155.
    1. Avila G., Medina I.M., Jiménez E., Elizondo G., Aguilar C.I. Transforming growth factor-beta1 decreases cardiac muscle L-type Ca2+ current and charge movement by acting on the Cav1.2 mRNA. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H622–H631. doi: 10.1152/ajpheart.00781.2006.
    1. Cannone V., Ledwidge M., Watson C., McKie P.M., Burnett J.C., Jr., McDonald K. STOP-HF trial: higher endogenous BNP and cardiovascular protection in subjects at risk for heart failure. JACC. Basic Transl. Sci. 2021;6:497–504. doi: 10.1016/j.jacbts.2021.05.001.
    1. Hu Y.F., Yeh H.I., Tsao H.M., Tai C.T., Lin Y.J., Chang S.L., Lo L.W., Tuan T.C., Tzeng C.H., Huang S.H., et al. Impact of circulating monocyte CD36 level on atrial fibrillation and subsequent catheter ablation. Heart Rhythm. 2011;8:650–656. doi: 10.1016/j.hrthm.2010.12.036.
    1. Liu L., Lee J., Fu G., Liu X., Wang H., Zhang Z., Zheng Q. Activation of peripheral blood CD3(+) T-lymphocytes in patients with atrial fibrillation. Int. Heart J. 2012;53:221–224. doi: 10.1536/ihj.53.221.
    1. Diabetes Prevention Program Research Group Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2012;35:731–737. doi: 10.2337/dc11-1299.
    1. Cameron A.R., Morrison V.L., Levin D., Mohan M., Forteath C., Beall C., McNeilly A.D., Balfour D.J.K., Savinko T., Wong A.K.F., et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res. 2016;119:652–665. doi: 10.1161/circresaha.116.308445.
    1. Salpeter S.R., Buckley N.S., Kahn J.A., Salpeter E.E. Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am. J. Med. 2008;121:149–157.e2. doi: 10.1016/j.amjmed.2007.09.016.
    1. Glueck C.J., Fontaine R.N., Wang P., Subbiah M.T., Weber K., Illig E., Streicher P., Sieve-Smith L., Tracy T.M., Lang J.E., McCullough P. Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metabolism. 2001;50:856–861. doi: 10.1053/meta.2001.24192.
    1. Gundewar S., Calvert J.W., Jha S., Toedt-Pingel I., Ji S.Y., Nunez D., Ramachandran A., Anaya-Cisneros M., Tian R., Lefer D.J. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ. Res. 2009;104:403–411. doi: 10.1161/CIRCRESAHA.108.190918.
    1. Tong D., Schiattarella G.G., Jiang N., Daou D., Luo Y., Link M.S., Lavandero S., Gillette T.G., Hill J.A. Impaired AMP-activated protein kinase signaling in heart failure with preserved ejection fraction–associated atrial fibrillation. Circulation. 2022;146:73–76. doi: 10.1161/CIRCULATIONAHA.121.058301.
    1. Ostropolets A., Elias P.A., Reyes M.V., Wan E.Y., Pajvani U.B., Hripcsak G., Morrow J.P. Metformin is associated with a lower risk of atrial fibrillation and ventricular arrhythmias compared with sulfonylureas. Circ. Arrhythm. Electrophysiol. 2021;14:e009115. doi: 10.1161/CIRCEP.120.009115.
    1. Tseng C.-H. Metformin use is associated with a lower incidence of hospitalization for atrial fibrillation in patients with type 2 diabetes mellitus. Front. Med. 2021;7:592901. doi: 10.3389/fmed.2020.592901.
    1. Hsu J., Gore-Panter S., Tchou G., Castel L., Lovano B., Moravec C.S., Pettersson G.B., Roselli E.E., Gillinov A.M., McCurry K.R., et al. Genetic control of left atrial gene expression yields insights into the genetic susceptibility for atrial fibrillation. Circ. Genom. Precis. Med. 2018;11:e002107. doi: 10.1161/circgen.118.002107.
    1. Burridge P.W., Diecke S., Matsa E., Sharma A., Wu H., Wu J.C. Modeling cardiovascular diseases with patient-specific human pluripotent stem cell-derived cardiomyocytes. Methods Mol. Biol. 2016;1353:119–130. doi: 10.1007/7651_2015_196.
    1. Zhang Q., Jiang J., Han P., Yuan Q., Zhang J., Zhang X., Xu Y., Cao H., Meng Q., Chen L., et al. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res. 2011;21:579–587. doi: 10.1038/cr.2010.163.
    1. Wu S.P., Cheng C.M., Lanz R.B., Wang T., Respress J.L., Ather S., Chen W., Tsai S.J., Wehrens X.H.T., Tsai M.J., Tsai S.Y. Atrial identity is determined by a COUP-TFII regulatory network. Dev. Cell. 2013;25:417–426. doi: 10.1016/j.devcel.2013.04.017.
    1. Gore-Panter S.R., Hsu J., Barnard J., Moravec C.S., Van Wagoner D.R., Chung M.K., Smith J.D. PANCR, the PITX2 adjacent noncoding RNA, is expressed in human left atria and regulates PITX2c expression. Circ. Arrhythm. Electrophysiol. 2016;9:e003197. doi: 10.1161/circep.115.003197.
    1. Trapnell C., Pachter L., Salzberg S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–1111. doi: 10.1093/bioinformatics/btp120.
    1. Bray N.L., Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519.
    1. Soneson C., Love M.I., Robinson M.D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521. doi: 10.12688/f1000research.7563.2.
    1. Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007.
    1. Wang J., Zhao Q., Hastie T., Owen A.B. Confounder adjustment in multiple hypothesis testing. Ann. Stat. 2017;45:1863–1894. doi: 10.1214/16-aos1511.
    1. NCBI Resource Coordinators Database resources of the national center for biotechnology information. Nucleic Acids Res. 2016;44:D7–D19. doi: 10.1093/nar/gkv1290.
    1. Kuleshov M.V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z., Koplev S., Jenkins S.L., Jagodnik K.M., Lachmann A., et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–W97. doi: 10.1093/nar/gkw377.
    1. Law V., Knox C., Djoumbou Y., Jewison T., Guo A.C., Liu Y., Maciejewski A., Arndt D., Wilson M., Neveu V., et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42:D1091–D1097. doi: 10.1093/nar/gkt1068.
    1. Yang H., Qin C., Li Y.H., Tao L., Zhou J., Yu C.Y., Xu F., Chen Z., Zhu F., Chen Y.Z. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 2016;44:D1069–D1074. doi: 10.1093/nar/gkv1230.
    1. The UniProt Consortium UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45 doi: 10.1093/nar/gkw1099. D158–d169.
    1. Sirota M., Dudley J.T., Kim J., Chiang A.P., Morgan A.A., Sweet-Cordero A., Sage J., Butte A.J. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med. 2011;3:96ra77. doi: 10.1126/scitranslmed.3001318.
    1. Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 2020;38:276–278. doi: 10.1038/s41587-020-0439-x.
    1. Rath S., Sharma R., Gupta R., Ast T., Chan C., Durham T.J., Goodman R.P., Grabarek Z., Haas M.E., Hung W.H.W., et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49 doi: 10.1093/nar/gkaa1011. D1541–d1547.
    1. Starren J.B., Winter A.Q., Lloyd-Jones D.M. Enabling a learning health system through a unified Enterprise data Warehouse: the experience of the northwestern university clinical and translational sciences (NUCATS) Institute. Clin. Transl. Sci. 2015;8:269–271. doi: 10.1111/cts.12294.
    1. Storey J.D., Tibshirani R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA. 2003;100:9440–9445. doi: 10.1073/pnas.1530509100.
    1. Ostropolets A., Elias P.A., Reyes M.V., Wan E.Y., Pajvani U.B., Hripcsak G., Morrow J.P. Metformin is associated with a lower risk of atrial fibrillation and ventricular arrhythmias compared with sulfonylureas: an observational study. Circ. Arrhythm. Electrophysiol. 2021;14:e009115. doi: 10.1161/circep.120.009115.

Source: PubMed

Подписаться