Emetine, Ipecac, Ipecac Alkaloids and Analogues as Potential Antiviral Agents for Coronaviruses

Martin D Bleasel, Gregory M Peterson, Martin D Bleasel, Gregory M Peterson

Abstract

The COVID-19 coronavirus is currently spreading around the globe with limited treatment options available. This article presents the rationale for potentially using old drugs (emetine, other ipecac alkaloids or analogues) that have been used to treat amoebiasis in the treatment of COVID-19. Emetine had amongst the lowest reported half-maximal effective concentration (EC50) from over 290 agents screened for the Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) coronaviruses. While EC50 concentrations of emetine are achievable in the blood, studies show that concentrations of emetine can be almost 300 times higher in the lungs. Furthermore, based on the relative EC50s of emetine towards the coronaviruses compared with Entamoeba histolytica, emetine could be much more effective as an anti-coronavirus agent than it is against amoebiasis. This paper also discusses the known side effects of emetine and related compounds, how those side effects can be managed, and the optimal method of administration for the potential treatment of COVID-19. Given the serious and immediate threat that the COVID-19 coronavirus poses, our long history with emetine and the likely ability of emetine to reach therapeutic concentrations within the lungs, ipecac, emetine, and other analogues should be considered as potential treatment options, especially if in vitro studies confirm viral sensitivity.

Keywords: COVID-19; MERS; SARS; coronavirus; dehydroemetine; emetine; ipecac; repurposing: antiviral; treatment.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Lee M.R. Ipecacuanha: The South American vomiting root. J. R. Coll. Physicians Edinb. 2008;38:6.
    1. Liu Q., Xia S., Sun Z., Wang Q., Du L., Lu L., Jiang S. Testing of Middle East Respiratory Syndrome coronavirus replication inhibitors for the ability to block viral entry. Antimicrob. Agents Chemother. 2014;59:742–744. doi: 10.1128/AAC.03977-14.
    1. Dyall J., Coleman C., Hart B., Venkataraman T., Holbrook M.R., Kindrachuk J., Johnson R.F., Olinger G., Jahrling P.B., Laidlaw M., et al. Repurposing of clinically developed drugs for treatment of Middle East Respiratory Syndrome coronavirus infection. Antimicrob. Agents Chemother. 2014;58:4885–4893. doi: 10.1128/AAC.03036-14.
    1. Vedder E.B. An experimental study of the action of ipecacuanha on amoebae. Far East. Assoc. Trop. Med. Trans. Second Bienn. Congr. Held Hongkong. 1912:87–91.
    1. Yang W.C., Dubick M. Mechanism of emetine cardiotoxicity. Pharmacol. Ther. 1980;10:15–26. doi: 10.1016/0163-7258(80)90007-8.
    1. Gilman A., Goodman L., Goodman A., editors. Pharmacological Basis Therapeutics. 6th ed. Macmillan; New York, NY, USA: 1980.
    1. Scragg J.N., Powell S.J. Emetine hydrochloride and chloroquine in the treatment of children with amoebic liver abscess. Arch. Dis. Child. 1966;41:549–550. doi: 10.1136/adc.41.219.549.
    1. Foy G. Ipecacuanha and emetine. Lancet. 1912;180:1242. doi: 10.1016/S0140-6736(01)40715-X.
    1. Scharman E.J., Hutzler J.M., Rosencrance J.G., Tracy T.S. Single dose pharmacokinetics of syrup of ipecac. Ther. Drug Monit. 2000;22:566–573. doi: 10.1097/00007691-200010000-00011.
    1. Minton N., Swift R., Lawlor C., Mant T., Henry J. Ipecacuanha-induced emesis: A human model for testing antiemetic drug activity. Clin. Pharmacol. Ther. 1993;54:53–57. doi: 10.1038/clpt.1993.109.
    1. Asano T., Ishihara K., Wakui Y., Yanagisawa T., Kimura M., Kamei H., Yoshida T., Kuroiwa Y., Fujii Y., Yamashita M., et al. Absorption, distribution and excretion of 3H-labeled cephaeline- and emetine-spiked ipecac syrup in rats. Eur. J. Drug Metab. Pharmacokinet. 2002;27:17–27. doi: 10.1007/BF03190401.
    1. Reynolds J.E.F., Parfitt K., Parsons A., Sweerman S., editors. Martindale: The Extra Pharmacopoeia. 29th ed. The Pharmaceutical Press; London, UK: 1989.
    1. Yang S., Xu M., Lee E.M., Gorshkov K., Shiryaev S.A., He S., Sun W., Cheng Y.-S., Hu X., Tharappel A.M., et al. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: Inhibiting viral replication and decreasing viral entry. Cell Discov. 2018;4:31. doi: 10.1038/s41421-018-0034-1.
    1. Moran D.M., Crouch D.J., Finkle B.S. Absorption of ipecac alkaloids in emergency patients. Ann. Emerg. Med. 1984;13:1100–1102. doi: 10.1016/S0196-0644(84)80332-7.
    1. Asano T., Watanabe J., Sadakane C., Ishihara K., Hirakura K., Wakui Y., Yanagisawa T., Kimura M., Kamei H., Yoshida T., et al. Biotransformation of the ipecac alkaloids cephaeline and emetine from ipecac syrup in rats. Eur. J. Drug Metab. Pharmacokinet. 2002;27:29–35. doi: 10.1007/BF03190402.
    1. Schwartz D.E., Herrero J. Comparative pharmacokinetic studies of dehydroemetine and emetine in guinea pigs using spectrofluorometric and radiometric methods. Am. J. Trop. Med. Hyg. 1965;14:78–83. doi: 10.4269/ajtmh.1965.14.78.
    1. Hasegawa M., Sasaki T., Sadakane K., Tabuchi M., Takeda Y., Kimura M., Fujii Y. Studies for the emetic mechanisms of ipecac syrup (TJN-119) and its active components in ferrets: Involvement of 5-hydroxytryptamine receptors. Jpn. J. Pharmacol. 2002;89:113–119. doi: 10.1254/jjp.89.113.
    1. Stephen P.M. Principles of Cardiac Toxicology. CRC Press; Boca Raton, FL, USA: 1991. Chapter 9: Cardiotoxicity of emetine and analogs.
    1. Bansal D., Sehgal R., Chawla Y., Mahajan R.C., Malla N. In vitro activity of antiamoebic drugs against clinical isolates of Entamoeba histolytica and Entamoeba dispar. Ann. Clin. Microbiol. Antimicrob. 2004;3:27. doi: 10.1186/1476-0711-3-27.
    1. Mukhopadhyay R., Roy S., Venkatadri R., Su Y.-P., Ye W., Barnaeva E., Griner L.M., Southall N., Hu X., Wang A.Q., et al. Efficacy and mechanism of action of low dose emetine against human cytomegalovirus. PLOS Pathog. 2016;12:e1005717. doi: 10.1371/journal.ppat.1005717.
    1. Valadão A.L.C., Abreu C.M., Dias J.Z., Arantes P.R., Verli H., Tanuri A., Aguiar R. Natural plant alkaloid (emetine) inhibits HIV-1 replication by interfering with reverse transcriptase activity. Molecules. 2015;20:11474–11489. doi: 10.3390/molecules200611474.
    1. Shen L., Niu J., Wang C., Huang B., Wang W., Zhu N., Deng Y., Wang H., Ye F., Cen S., et al. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J. Virol. 2019;93 doi: 10.1128/JVI.00023-19.
    1. Ho P.C., Dweik R., Cohen M.C. Rapidly reversible cardiomyopathy associated with chronic ipecac ingestion. Clin. Cardiol. 1998;21:780–783. doi: 10.1002/clc.4960211018.
    1. Adler A.G., Walinsky P., Krall R.A., Cho S.Y. Death resulting from ipecac syrup poisoning. JAMA. 1980;243:1927–1928. doi: 10.1001/jama.1980.03300450041020.
    1. British Pharmacopoeia Omitted-monographs-BP-2000-to-2013—Updated.pdf. [(accessed on 21 March 2020)]; Available online: .
    1. USP Reference Standard: Emetine Hydrochloride (300 mg) [(accessed on 25 February 2020)]; Available online: .
    1. WHO . Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (2019-nCoV) Infection is Suspected: Interim Guidance 28 January 2020. World Health Organization; Geneva, Switzerland: 2020. [(accessed on 21 March 2020)]. Available online: .
    1. Akinboye E.S. Biological activities of emetine. Open Nat. Prod. J. 2011;4:8–15. doi: 10.2174/1874848101104010008.
    1. Allen M.R. Skeletal accumulation of bisphosphonates: Implications for osteoporosis treatment. Expert Opin. Drug Metab. Toxicol. 2008;4:1371–1378. doi: 10.1517/17425255.4.11.1371.
    1. Al Ghamdi M., Alghamdi K.M., Ghandoora Y., Alzahrani A., Salah F., Alsulami A., Bawayan M.F., Vaidya D., Perl T.M., Sood G. Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC Infect. Dis. 2016;16:174. doi: 10.1186/s12879-016-1492-4.
    1. Chan J.F.-W., Yao Y., Yeung M.L., Deng W., Bao L., Jia L., Li F., Xiao C., Gao H., Yu P., et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J. Infect. Dis. 2015;212:1904–1913. doi: 10.1093/infdis/jiv392.
    1. Salata C., Calistri A., Parolin C., Baritussio A., Palù G. Antiviral activity of cationic amphiphilic drugs. Expert Rev. Anti-infective Ther. 2017;15:483–492. doi: 10.1080/14787210.2017.1305888.
    1. Van Der Lugt J., Lange J.M.A., Avihingsanon A., Andrade B.B., Sealoo S., Burger D., Gorowara M., Phanuphak P., Ruxrungtham K. Plasma concentrations of generic lopinavir/ritonavir in HIV type-1-infected individuals. Antivir. Ther. 2009;14:1001–1004. doi: 10.3851/IMP1410.
    1. Kamali F., Huang M.L. Increased systemic availability of loperamide after oral administration of loperamide and loperamide oxide with cotrimoxazole. Br. J. Clin. Pharmacol. 1996;41:125–128. doi: 10.1111/j.1365-2125.1996.tb00169.x.
    1. Karunajeewa H.A., Salman S., Mueller I., Baiwog F., Gomorrai S., Law I., Page-Sharp M., Rogerson S.J., Siba P., Ilett K.F., et al. Pharmacokinetics of chloroquine and monodesethylchloroquine in pregnancy. Antimicrob. Agents Chemother. 2010;54:1186–1192. doi: 10.1128/AAC.01269-09.
    1. Durcan L., Clarke W., Magder L., Petri M. OP0187 Hydroxychloroquine blood levels in SLE: Clarifying dosing controversies and improving adherence. Ann. Rheum. Dis. 2015;74:142–143. doi: 10.1136/annrheumdis-2015-eular.3895.
    1. Orrell C., Little F., Smith P., Folb P., Taylor W., Olliaro P., Barnes K.I. Pharmacokinetics and tolerability of artesunate and amodiaquine alone and in combination in healthy volunteers. Eur. J. Clin. Pharmacol. 2008;64:683–690. doi: 10.1007/s00228-007-0452-8.
    1. Hiemke C., Baumann P., Bergemann N., Conca A., Dietmaier O., Egberts K., Frič M., Gerlach M., Greiner C., Grunder G., et al. AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011. Pharmacopsychiatry. 2011;44:195–235. doi: 10.1055/s-0031-1286287.
    1. Taylor G., Houston J., Shaffer J., Mawer G. Pharmacokinetics of promethazine and its sulphoxide metabolite after intravenous and oral administration to man. Br. J. Clin. Pharmacol. 1983;15:287–293. doi: 10.1111/j.1365-2125.1983.tb01501.x.
    1. Yesavage J.A., Holman C.A., Cohn R. Correlation of thiothixene serum levels and age. Psychopharmacology. 1981;74:170–172. doi: 10.1007/BF00432687.
    1. Simons F.E., Simons K.J., Chung M., Yeh J. The comparative pharmacokinetics of H1-receptor antagonists. Ann. Allergy. 1987;59:20–24.
    1. Zeneca Pharmaceuticals . Professional Information Brochure: Nolvadex (Tamoxifen Citrate) London, UK: 1998. [(accessed on 21 March 2020)]. Available online: .
    1. Clemedson C. ACuteTox: 7-Cycloheximide Revised. [(accessed on 21 March 2020)]; Available online: .
    1. Talpaz M.T., Saglio G., Atallah E., Rousselot P. Dasatinib dose management for the treatment of chronic myeloid leukemia. Cancer. 2018;124:1660–1672. doi: 10.1002/cncr.31232.
    1. Pedersen C., Alsiö Å., Lagging M., Langeland N., Färkkilä M., Buhl M.R., Mørch K., Westin J., Sangfelt P., Norkrans G., et al. Ribavirin plasma concentration is a predictor of sustained virological response in patients treated for chronic hepatitis C virus genotype 2/3 infection. J. Viral Hepat. 2011;18:245–251. doi: 10.1111/j.1365-2893.2010.01303.x.
    1. Kaplan B. Mycophenolic acid trough level monitoring in solid organ transplant recipients treated with mycophenolate mofetil: Association with clinical outcome. Curr. Med Res. Opin. 2006;22:2355–2364. doi: 10.1185/030079906X148481.
    1. Bayer HealthCare Pharmaceuticals . Betaseron: Highlights of Prescribing Information. Berlin, Germany: 2015. [(accessed on 21 March 2020)]. Available online: .
    1. Chan J.F.-W., Chan K.-H., Kao R.Y., To K.K.-W., Zheng B.J., Li C.P., Li P.T., Dai J., Mok F.K., Chen H., et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J. Infect. 2013;67:606–616. doi: 10.1016/j.jinf.2013.09.029.

Source: PubMed

Подписаться