Effects of Supplementation with Natural Antioxidants on Oocytes and Preimplantation Embryos

Maria Cristina Budani, Gian Mario Tiboni, Maria Cristina Budani, Gian Mario Tiboni

Abstract

For most infertile couples, in vitro fertilization (IVF) represents the only chance to conceive. Given the limited success of IVF procedures, novel approaches are continuously tested with the aim of improving IVF outcomes. Growing attention is devoted today to the potential benefit of natural antioxidants in the optimization of infertility treatments. This review summarizes current data in this context, focusing on both experimental studies on oocytes/embryos and clinical trials on antioxidants supplementation. Based on information gained from experimental studies, antioxidant supplementation may have beneficial effects on IVF outcomes in terms of quality and cryotolerance of in vitro produced embryos, together with positive effects on in vitro maturation oocytes and on early embryonic development. Unfortunately, from the clinical side, there is a paucity of evidence favoring the protective qualities of antioxidants. Among the antioxidants considered, coenzyme Q10 may be regarded as one of the most promising for its positive role in rescuing the oxidative stress-induced damages, but further data are needed. It is concluded that further trials are necessary to characterize the potential clinical value of antioxidants in IVF treatments.

Keywords: in vitro fertilization; infertility; natural antioxidants; oxidative stress.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Borght M.V., Wyns C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018;62:2–10. doi: 10.1016/j.clinbiochem.2018.03.012.
    1. Meldrum D.R., Casper R.F., Diez-Juan A., Simon C., Domar A.D., Frydman R. Aging and the environment affect gamete and embryo potential: Can we intervene? Fertil. Steril. 2016;105:548–559. doi: 10.1016/j.fertnstert.2016.01.013.
    1. Von Mengden L., Klamt F., Smitz J. Redox biology of human cumulus cells: Basic concepts, impact on oocyte quality and potential clinical use. Antioxid. Redox Signal. 2019 doi: 10.1089/ars.2019.7984.
    1. Ruder E.H., Hartman T.J., Blumberg J., Goldman M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update. 2008;14:345–357. doi: 10.1093/humupd/dmn011.
    1. Halliwell B., Aruoma O.I. DNA damage by oxygen derived species. FEBS Lett. 1991;281:9–19. doi: 10.1016/0014-5793(91)80347-6.
    1. Kehrer J.P., Lund L.G. Cellular reducing equivalents and oxidative stress. Free Radic. Biol. Med. 1994;17:65–75. doi: 10.1016/0891-5849(94)90008-6.
    1. Aitken R.J. Impact of oxidative stress on male and female germ cells; implications for fertility. Reproduction. 2019;159:R189–R201. doi: 10.1530/REP-19-0452.
    1. Ruder E.H., Hartmanb T.J., Goldmanc M.B. Impact of oxidative stress on female fertility. Curr. Opin. Obstet. Gynecol. 2009;21:219–222. doi: 10.1097/GCO.0b013e32832924ba.
    1. Agarwal A., Said T.M. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum. Reprod. Update. 2003;9:331–345. doi: 10.1093/humupd/dmg027.
    1. Lian H.Y., Gao Y., Jiao G.Z., Sun M.J., Wu X.F., Wang T.Y. Antioxidant supplementation overcomes the deleterious effects of maternal restraint stress induced oxidative stress on mouse oocytes. Reproduction. 2013;146:559–568. doi: 10.1530/REP-13-0268.
    1. Kiani-Esfahani A., Bahrami S., Tavalaee M., Deemeh M.R., Mahjour A.A., Nasr-Esfahani M.H. Cytosolic and mitochondrial ROS: Which one is associated with poor chromatin remodeling? Syst. Biol. Reprod. Med. 2013;59:352–359. doi: 10.3109/19396368.2013.829536.
    1. Lu J., Wang Z., Cao J., Chen Y., Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2018;16:80. doi: 10.1186/s12958-018-0391-5.
    1. Agarwal A., Rana M., Qiu E., AlBunni H., Bui A.D., Henkel R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia. 2018;50:e13126. doi: 10.1111/and.13126.
    1. Richards J.S. Hormonal control of gene expression in the ovary. Endocr. Rev. 1994;15:725–751. doi: 10.1210/edrv-15-6-725.
    1. Du B.T., Takahashi K., Ishida G.M., Nakahara K., Saito H., Kurachi H. Usefulness of intralovarian artery pulsatility and resistance indices measurement on the day of follicle aspiration for the assessment of oocyte quality. Fertil. Steril. 2006;85:366–370. doi: 10.1016/j.fertnstert.2005.07.1316.
    1. Ahmed A., Cudmore M.J. Can the biology of VEGF and haem oxygenases help solve pre-eclampsia? Biochem. Soc. Trans. 2009;37:1237–1242. doi: 10.1042/BST0371237.
    1. Szpera-Gozdziewicz A., Breborowicz G.H. Endothelial dysfunction in the pathogenesis of pre-eclampsia. Front. Biosci. (Landmark Ed.) 2014;19:734–746. doi: 10.2741/4240.
    1. Sugino N. Roles of reactive oxygen species in the corpus luteum. Anim. Sci. J. 2006;77:556–565. doi: 10.1111/j.1740-0929.2006.00386.x.
    1. Behrman H.R., Kodaman P.H., Preston S.L., Gao S.P. Oxidative stress and the ovary. J. Soc. Gynecol. Investig. 2001;8:S40–S42.
    1. Cardoso J.P., Cocuzza M., Elterman D. Optimizing male fertility: Oxidative stress and the use of antioxidants. World J. Urol. 2019;37:1029–1034. doi: 10.1007/s00345-019-02656-3.
    1. Singh F., Charles A.L., Schlagowski A.I., Bouitbir J., Bonifacio A., Piquard F., Krähenbühl S., Geny B., Zoll J. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochim. Biophys. Acta. 2015;1853:1574–1585. doi: 10.1016/j.bbamcr.2015.03.006.
    1. Geva E., Bartoov B., Zabludovsky N., Lessing J.B., Lerner-Geva L., Amit A. The effect of antioxidant treatment on human spermatozoa and fertilization rate in an in vitro fertilization program. Fertil. Steril. 1996;66:430–434. doi: 10.1016/S0015-0282(16)58514-8.
    1. Agarwal A., Aponte-Mellado A., Premkumar B.J., Shaman A., Gupta S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012;10:49. doi: 10.1186/1477-7827-10-49.
    1. Da Broi M.G., Navarro P.A. Oxidative stress and oocyte quality: Ethiopathogenic mechanisms ofminimal/mild endometriosis-related infertility. Cell Tissue Res. 2016;364:1–7. doi: 10.1007/s00441-015-2339-9.
    1. Budani M.C., Carletti E., Tiboni G.M. Cigarette smoke is associated with altered expression of antioxidant enzymes in granulosa cells from women undergoing in vitro fertilization. Zygote. 2017;25:296–303. doi: 10.1017/S0967199417000132.
    1. Santini S.J., Cordone V., Falone S., Mijit M., Tatone C., Amicarelli F., Di Emidio G. Role of mitochondria in the oxidative stress induced by electromagnetic fields: Focus on reproductive systems. Oxid. Med. Cell. Longev. 2018 doi: 10.1155/2018/5076271.
    1. Abbasihormozi S.H., Babapour V., Kouhkan A., Naslji A.N., Afraz K., Zolfaghary Z., Shahverdi A.H. Stress hormone and oxidative stress biomarkers link obesity and diabetes with reduced fertility potential. Cell J. 2019;21:307–313.
    1. Sohel M.M.H., Akyuz B., Konca Y., Arslan K., Sariozkan S., Cinar M.U. Oxidative stress modulates the expression of apoptosis-associated microRNAs in bovine granulosa cells in vitro. Cell Tissue Res. 2019;376:295–308. doi: 10.1007/s00441-019-02990-3.
    1. Wojsiat J., Korczyński J., Borowiecka M., Żbikowska H.M. The role of oxidative stress in female infertility and in vitro fertilization. Postepy Hig. Med. Dosw. (Oline) 2017;71:359–366. doi: 10.5604/01.3001.0010.3820.
    1. Sharma R.K., Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–850. doi: 10.1016/S0090-4295(96)00313-5.
    1. Lane M., Gardner D.K. Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod. Fertil. Dev. 2005;17:371–378. doi: 10.1071/RD04102.
    1. Gardner D.K., Kelley R.L. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. J. Dev. Orig. Health Dis. 2017;8:418–435. doi: 10.1017/S2040174417000368.
    1. Sikka S.C., Rajasekaran M., Hellstrom W.J. Role of oxidative stress and antioxidants in male infertility. J. Androl. 1995;16:464–468.
    1. Xu D.P., Li X., Meng X., Zhou T., Zhou Y., Zheng J., Zhang J.J., Li H.L. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017;18:96. doi: 10.3390/ijms18010096.
    1. Agarwal A., Gupta S., Sharma R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005;3:28. doi: 10.1186/1477-7827-3-28.
    1. Yang T., Li S., Zhang X., Pang X., Lin Q., Cao J. Resveratrol, sirtuins, and viruses. Rev. Med. Virol. 2015;25:431–445. doi: 10.1002/rmv.1858.
    1. Park E.J., Pezzuto J.M. The pharmacology of resveratrol in animals and humans. Biochim. Biophys. Acta. 2015;1852:1071–1113. doi: 10.1016/j.bbadis.2015.01.014.
    1. Lee K., Wang C., Chaille J.M., Machaty Z. Effect of resveratrol on the development of porcine embryos produced in vitro. J. Reprod. Dev. 2010;56:330–335. doi: 10.1262/jrd.09-174K.
    1. Abdel-Wahab A.M., Zullo G., Boccia L., De Blasi M., Longobardi V., Albero G., Gasparrini B. 132 resveratrol during in vitro culture improves cryotolerance of in vitro produced bovine embryos. Reprod. Fertil. Dev. 2012;25:213–214. doi: 10.1071/RDv25n1Ab132.
    1. Salzano A., Albero G., Zullo G., Neglia G., Abdel-Wahab A.M., Bifulco G., Zicarelli L., Gasparrini B. Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Anim. Reprod. Sci. 2014;151:91–96. doi: 10.1016/j.anireprosci.2014.09.018.
    1. Gaviria S.M., Morado S.A., López Herrera A., Betancur G.R., Álvarez R.A.U., Zuluaga J.E., Cética P.D. Resveratrol supplementation promotes recovery of lower oxidative metabolism after vitrification and warming of in vitro-produced bovine embryos. Reprod. Fertil. Dev. 2019;31:521–528. doi: 10.1071/RD18216.
    1. Kwak S.S., Cheong S.A., Jeon Y., Lee E., Choi K.C., Jeung E.B., Hyun S.H. The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology. 2012;78:86–101. doi: 10.1016/j.theriogenology.2012.01.024.
    1. Liu M., Yin Y., Ye X., Zeng M., Zhao Q., Keefe D.L., Liu L. Resveratrol protects against age-associated infertility in mice. Hum. Reprod. 2013;28:707–717. doi: 10.1093/humrep/des437.
    1. Wang F., Tian X., Zhang L., He C., Ji P., Li Y., Tan D., Liu G. Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertil. Steril. 2014;101:577–586. doi: 10.1016/j.fertnstert.2013.10.041.
    1. Li C.Y., Zhao Y.H., Hao H.S., Wang H.Y., Huang J.M., Yan C.L., Du W.H., Pang Y.W., Zhang P.P., Liu Y., et al. Resveratrol significantly improves the fertilisation capacity of bovine sex-sorted semen by inhibiting apoptosis and lipid peroxidation. Sci. Rep. 2018;8:7603. doi: 10.1038/s41598-018-25687-z.
    1. Piras A.R., Ariu F., Falchi L., Zedda M.T., Pau S., Schianchi E., Paramio M., Bogliolo L. Resveratrol treatment during maturation enhances developmental competence of oocytes after prolongued ovary storage at 4 °C in the domestic cat model. Theriogenology. 2020;144:152–157. doi: 10.1016/j.theriogenology.2020.01.009.
    1. Ochiai A., Kuroda K., Ikemoto Y., Ozaki R., Nakagawa K., Nojiri S., Takeda S., Sugiyama R. Influence of resveratrol supplementation on IVF-embryo transfer cycle outcomes. Reprod. Biomed. Online. 2019;39:205–210. doi: 10.1016/j.rbmo.2019.03.205.
    1. Bahramrezaie M., Amidi F., Aleyasin A., Saremi A., Aghahoseini M., Brenjian S., Khodarahmian M., Pooladi A. Effects of resveratrol on VEGF and HIF1 genes expression in granulosa cells in the angiogenesis pathway and laboratory parameters of polycystic ovary syndrome: A triple-blind randomized clinical trial. J. Assist. Reprod. Genet. 2019;36:1701–1712. doi: 10.1007/s10815-019-01461-6.
    1. Gao C., Han H.B., Tian X.Z., Tan D.X., Wang L., Zhou G.B., Zhu S.E., Liu G.S. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J. Pineal. Res. 2012;52:305–311. doi: 10.1111/j.1600-079X.2011.00944.x.
    1. Tamura H., Takasaki A., Taketani T., Tanabe M., Kizuka F., Lee L., Tamura I., Maekawa R., Aasada H., Yamagata Y., et al. The role of melatonin as an antioxidant in the follicle. J. Ovarian Res. 2012;5:1–9. doi: 10.1186/1757-2215-5-5.
    1. Dai X., Lu Y., Zhang M., Miao Y., Zhou C., Cui Z., Xiong B. Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion. Hum. Reprod. 2017;32:598–606. doi: 10.1093/humrep/dew362.
    1. Rodriguez-Osorio N., Kim I.J., Wang H., Kaya A., Memili E. Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. J. Pineal Res. 2007;43:283–288. doi: 10.1111/j.1600-079X.2007.00475.x.
    1. He C., Wang J., Zhang Z., Yang M., Li Y., Tian X., Ma T., Tao J., Zhu K., Song Y., et al. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int. J. Mol. Sci. 2016;17:939. doi: 10.3390/ijms17060939.
    1. Cebrian-Serrano A., Salvador I., Raga E., Dinnyes A., Silvestre M.A. Beneficial effect of melatonin on blastocyst in vitro production from heat-stressed bovine oocytes. Reprod. Domest. Anim. 2013;48:738–746. doi: 10.1111/rda.12154.
    1. Zhao X., Wang D., Wu Z., Pan B., Yang H., Zeng C., Zhang M., Liu G., Han H., Zhou G. Female reproductive performance in the mouse: Effect of oral melatonin. Molecules. 2018;23:1845. doi: 10.3390/molecules23081845.
    1. Seko L.M., Moroni R.M., Leitao V.M., Teixeira D.M., Nastri C.O., Martins W.P. Melatonin supplementation during controlled ovarian stimulation for women undergoing assisted reproductive technology: Systematic review and meta-analysis of randomized controlled trials. Fertil. Steril. 2014;101:154–161. doi: 10.1016/j.fertnstert.2013.09.036.
    1. Nishihara T., Hashimoto S., Ito K., Nakaoka Y., Matsumoto K., Hosoi Y., Morimoto Y. Oral melatonin supplementation improves oocyte and embryo quality in women undergoing in vitro fertilization-embryo transfer. Gynecol. Endocrinol. 2014;30:359–362. doi: 10.3109/09513590.2013.879856.
    1. Espino J., Macedo M., Lozano G., Ortiz Á., Rodríguez C., Rodríguez A.B., Bejarano I. Impact of melatonin supplementation in women with unexplained infertility undergoing fertility treatment. Antioxidants. 2019;8:338. doi: 10.3390/antiox8090338.
    1. Fernando S., Wallace E.M., Vollenhoven B., Lolatgis N., Hope N., Wong M., Lawrence M., Lawrence A., Russell C., Leong K., et al. Melatonin in assisted reproductive technology: A pilot double-blind randomized placebo-controlled clinical trial. Front. Endocrinol. (Lausanne) 2018;9:545. doi: 10.3389/fendo.2018.00545.
    1. Tong J., Sheng S., Sun Y., Li H., Li W.P., Zhang C., Chen Z.J. Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve. Reproduction. 2017;153:443–451. doi: 10.1530/REP-16-0641.
    1. Zheng M., Tong J., Li W.P., Chen Z.J., Zhang C. Melatonin concentration in follicular fluid is correlated with antral follicle count (AFC) and in vitro fertilization (IVF) outcomes in women undergoing assisted reproductive technology (ART) procedures. Gynecol. Endocrinol. 2018;34:446–450. doi: 10.1080/09513590.2017.1409713.
    1. Quinzii C.M., Tadesse S., Naini A., Hirano M. Effects of inhibiting CoQ10 biosynthesis with 4-nitrobenzoate in human fibroblasts. PLoS ONE. 2012;7:e30606. doi: 10.1371/journal.pone.0030606.
    1. Zhang M., ShiYang X., Zhang Y., Miao Y., Chen Y., Cui Z., Xiong B. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radic. Biol. Med. 2019;143:84–94. doi: 10.1016/j.freeradbiomed.2019.08.002.
    1. Ben-Meir A., Burstein E., Borrego-Alvarez A., Chong J., Wong E., Yavorska T., Naranian T., Chi M., Wang Y., Bentov Y., et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14:887–895. doi: 10.1111/acel.12368.
    1. Boots C.E., Boudoures A., Zhang W., Drury A., Moley K.H. Obesity-induced oocyte mitochondrial defects are partially prevented and rescued by supplementation with co-enzyme Q10 in a mouse model. Hum. Reprod. 2016;31:2090–2097. doi: 10.1093/humrep/dew181.
    1. Maside C., Martinez C.A., Cambra J.M., Lucas X., Martinez E.A., Gil M.A., Rodriguez-Martinez H., Parrilla I., Cuello C. Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos. Reprod. Domest. Anim. 2019;54(Suppl. S4):72–77. doi: 10.1111/rda.13486.
    1. Akarsu S., Gode F., Isik A.Z., Dikmen Z.G., Tekindal M.A. The association between coenzyme Q10 concentrations in follicular fluid with embryo morphokinetics and pregnancy rate in assisted reproductive techniques. J. Assist. Reprod. Genet. 2017;34:599–605. doi: 10.1007/s10815-017-0882-x.
    1. Giannubilo S.R., Orlando P., Silvestri S., Cirilli I., Marcheggiani F., Ciavattini A., Tiano L. CoQ10 supplementation in patients undergoing IVF-ET: The relationship with follicular fluid content and oocyte maturity. Antioxidants. 2018;7:141. doi: 10.3390/antiox7100141.
    1. Bentov Y., Hannam T., Jurisicova A., Esfandiari N., Casper R.F. Coenzyme Q10 Supplementation and Oocyte Aneuploidy in Women Undergoing IVF-ICSI Treatment. Clin. Med. Insights Reprod. Health. 2014;8:31–36. doi: 10.4137/CMRH.S14681.
    1. Xu Y., Nisenblat V., Lu C., Li R., Qiao J., Zhen X., Wang S. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: A randomized controlled trial. Reprod. Biol. Endocrinol. 2018;16:29. doi: 10.1186/s12958-018-0343-0.
    1. Truong T.T., Soh Y.M., Gardner D.K. Antioxidants improve mouse preimplantation embryo development and viability. Hum. Reprod. 2016;31:1445–1454. doi: 10.1093/humrep/dew098.
    1. Truong T., Gardner D.K. Antioxidants improve IVF outcome and subsequent embryo development in the mouse. Hum. Reprod. 2017;32:2404–2413. doi: 10.1093/humrep/dex330.
    1. Whitaker B.D., Casey S.J., Taupier R. The effects of N-acetyl-L-cysteine supplementation on in vitro porcine oocyte maturation and subsequent fertilisation and embryonic development. Reprod. Fertil. Dev. 2012;24:1048–1054. doi: 10.1071/RD12002.
    1. Takeo T., Horikoshi Y., Nakao S., Sakoh K., Ishizuka Y., Tsutsumi A., Fukumoto K., Kondo T., Haruguchi Y., Takeshita Y., et al. Cysteine analogs with a free thiol group promote fertilization by reducing disulfide bonds in the zona pellucida of mice. Biol. Reprod. 2015;92:90. doi: 10.1095/biolreprod.114.125443.
    1. Linck D.W., Larman M.G., Gardner D.K. Alpha-lipoic acid: An antioxidant that improves embryo development and protects against oxidative stress. Fert. Steril. 2007;88:S36–S37. doi: 10.1016/j.fertnstert.2007.07.131.
    1. Abdelrazik H., Sharma R., Mahfouz R., Agarwal A. L-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil. Steril. 2009;91:589–596. doi: 10.1016/j.fertnstert.2007.11.067.
    1. Li X.X., Lee K.B., Lee J.H., Kim K.J., Kim E.Y., Han K.W., Park K.S., Yu J., Kim M.K. Glutathione and cysteine enhance porcine preimplantation embryo development in vitro after intracytoplasmic sperm injection. Theriogenology. 2014;81:309–314. doi: 10.1016/j.theriogenology.2013.09.030.
    1. Knitlova D., Hulinska P., Jeseta M., Hanzalova K., Kempisty B., Machatkova M. Supplementation of l-carnitine during in vitro maturation improves embryo development from less competent bovine oocytes. Theriogenology. 2017;102:16–22. doi: 10.1016/j.theriogenology.2017.06.025.
    1. Jiang W., Li Y., Zhao Y., Gao Q., Jin Q., Yan C., Xu Y. L-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes. Theriogenology. 2019;143:64–73. doi: 10.1016/j.theriogenology.2019.11.036.
    1. Nikseresht M., Toori M.A., Rahimi H.R., Fallahzadeh A.R., Kahshani I.R., Hashemi S.F., Bahrami S., Mahmoudi R. Effect of antioxidants (β-mercaptoethanol and Cysteamine) on assisted reproductive technology in vitro. J. Clin. Diagn. Res. 2017;11:BC10–BC14. doi: 10.7860/JCDR/2017/21778.9298.
    1. Caamaño J.N., Ryoo Z.Y., Youngs C.R. Promotion of development of bovine embryos produced in vitro by addition of cysteine and beta-mercaptoethanol to a chemically defined culture system. J. Dairy Sci. 1998;81:369–374. doi: 10.3168/jds.S0022-0302(98)75586-9.
    1. Kobayashi M., Lee E.S., Fukui Y. Cysteamine or beta-mercaptoethanol added to a defined maturation medium improves blastocyst formation of porcine oocytes after intracytoplasmic sperm injection. Theriogenology. 2006;65:1191–1199. doi: 10.1016/j.theriogenology.2005.06.019.
    1. Abeydeera L.R., Wang W.H., Cantley T.C., Prather R.S., Day B.N. Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology. 1998;50:747–756. doi: 10.1016/S0093-691X(98)00180-0.
    1. Roushandeh A.M., Roudkenar M.H. The influence of meiotic spindle configuration by cysteamine during in vitro maturation of mouse oocytes. Iran Biomed. J. 2009;13:73–78.
    1. Sies H., Stahl W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 1995;62:1315–1321. doi: 10.1093/ajcn/62.6.1315S.
    1. Ikeda S., Kitagawa M., Imai H., Yamada M. The roles of vitamin A for cytoplasmic maturation of bovine oocytes. J. Reprod. Dev. 2005;51:23–35. doi: 10.1262/jrd.51.23.
    1. Yu S., Zhao Y., Feng Y., Zhang H., Li L., Shen W., Zhao M., Min L. β-carotene improves oocyte development and maturation under oxidative stress in vitro. Vitr. Cell. Dev. Biol. Anim. 2019;55:548–558. doi: 10.1007/s11626-019-00373-0.
    1. Schweigert F.J., Steinhagen B., Raila J., Siemann A., Peet D., Buscher U. Concentrations of carotenoids, retinol and alpha-tocopherol in plasma and follicular fluid of women undergoing IVF. Hum. Reprod. 2003;18:1259–1264. doi: 10.1093/humrep/deg249.
    1. Tiboni G.M., Bucciarelli T., Giampietro F., Sulpizio M., Di Ilio C. Influence of cigarette smoking on vitamin E, vitamin A, beta-carotene and lycopene concentrations in human pre-ovulatory follicular fluid. Int. J. Immunopathol. Pharm. 2004;17:389–393. doi: 10.1177/039463200401700319.
    1. Palan P.R., Cohen B.L., Barad D.H., Romney S.L. Effects of smoking on the levels of antioxidant beta carotene, alpha tocopherol and retinol in human ovarian follicular fluid. Gynecol. Obstet. Investig. 1995;39:43–46. doi: 10.1159/000292374.
    1. Asensi-Fabado M.A., Munné-Bosch S. Vitamins in plants: Occurrence, biosynthesis and antioxidant function. Trends Plant. Sci. 2010;15:582–592. doi: 10.1016/j.tplants.2010.07.003.
    1. Huang X., Gao S., Xia W., Hou S., Wu K. Folic acid facilitates in vitro maturation of mouse and Xenopus laevis oocytes. Br. J. Nutr. 2013;109:1389–1395. doi: 10.1017/S0007114512003248.
    1. Tsuji A., Nakamura T., Shibata K. Effects of mild and severe Vitamin B1 deficiencies on the meiotic maturation of mice oocytes. Nutr. Metab. Insights. 2017;10 doi: 10.1177/1178638817693824.
    1. Gaskins A.J., Chavarro J.E. Diet and fertility: A review. Am. J. Obstet. Gynecol. 2018;218:379–389. doi: 10.1016/j.ajog.2017.08.010.
    1. La Vecchia I., Paffoni A., Castiglioni M., Ferrari S., Bortolus R., Fusarini C.F., Bettinardi N., Somigliana E., Parazzini F. Folate, homocysteine and selected vitamins and minerals status in infertile women. Eur. J. Contracept. Reprod. Health Care. 2017;22:70–75. doi: 10.1080/13625187.2016.1263292.
    1. Paffoni A., Castiglioni M., Ferrari S., La Vecchia I., Fusarini C.F., Bettinardi N., Noli S., Parazzini F., Somigliana E. Homocysteine pathway and in vitro fertilization outcome. Reprod. Toxicol. 2018;76:12–16. doi: 10.1016/j.reprotox.2017.12.003.
    1. Ponzano A., Tiboni G.M. Folate serum levels in Italian women entering an in vitro fertilization program. Gynecol. Endocrinol. 2017;33:861–863. doi: 10.1080/09513590.2017.1334197.
    1. Gaskins A.J., Afeiche M.C., Wright D.L., Toth T.L., Williams P.L., Gillman M.W., Hauser R., Chavarro J.E. Dietary folate and reproductive success among women undergoing assisted reproduction. Obstet. Gynecol. 2014;124:801–809. doi: 10.1097/AOG.0000000000000477.
    1. Gaskins A.J., Chiu Y.H., Williams P.L., Ford J.B., Toth T.L., Hauser R., Chavarro J.E., EARTH Study Team Association between serum folate and vitamin B-12 and outcomes of assisted reproductive technologies. Am. J. Clin. Nutr. 2015;102:943–950. doi: 10.3945/ajcn.115.112185.
    1. Murto T., Svanberg A.S., Yngve A., Nilsson T.K., Altmäe S., Wånggren K., Salumets A., Stavreus-Evers A. Folic acid supplementation and IVF pregnancy outcome in women with unexplained infertility. Reprod. Biomed. Online. 2014;28:766–772. doi: 10.1016/j.rbmo.2014.01.017.
    1. Murto T., Kallak T.K., Hoas A., Altmäe S., Salumets A., Nilsson T.K., Svanberg A.S., Wånggren K., Yngve A., Stavreus-Evers A. Folic acid supplementation and methylenetetrahydrofolate reductase (MTHFR) gene variations in relation to in vitro fertilization pregnancy outcome. Acta Obstet. Gynecol. Scand. 2015;94:65–71. doi: 10.1111/aogs.12522.
    1. Haggarty P., McCallum H., McBain H., Andrews K., Duthie S., McNeill G., Templeton A., Haites N., Campbell D., Bhattacharya S. Effect of B vitamins and genetics on success of in-vitro fertilisation: Prospective cohort study. Lancet. 2006;367:1513–1519. doi: 10.1016/S0140-6736(06)68651-0.
    1. Lykkesfeldt J., Michels A.J., Frei B. Vitamin, C. Adv. Nutr. 2014;5:16–18. doi: 10.3945/an.113.005157.
    1. Castillo-Martín M., Bonet S., Morató R., Yeste M. Comparative effects of adding β-mercaptoethanol or L-ascorbic acid to culture or vitrification-warming media on IVF porcine embryos. Reprod. Fertil. Dev. 2014;26:875–882. doi: 10.1071/RD13116.
    1. Castillo-Martín M., Yeste M., Soler A., Morató R., Bonet S. Addition of L-ascorbic acid to culture and vitrification media of IVF porcine blastocysts improves survival and reduces HSPA1A levels of vitrified embryos. Reprod. Fertil. Dev. 2015;27:1115–1123. doi: 10.1071/RD14078.
    1. Nohalez A., Martinez C.A., Parrilla I., Roca J., Gil M.A., Rodriguez-Martinez H., Martinez E.A., Cuello C. Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology. 2018;113:113–119. doi: 10.1016/j.theriogenology.2018.02.014.
    1. Griesinger G., Franke K., Kinast C., Kutzelnigg A., Riedinger S., Kulin S., Kaali S.G., Feichtinger W. Ascorbic acid supplement during luteal phase in IVF. J. Assist. Reprod. Genet. 2002;19:164–168. doi: 10.1023/A:1014837811353.
    1. Lu X., Wu Z., Wang M., Cheng W. Effects of vitamin C on the outcome of in vitro fertilization-embryo transfer in endometriosis: A randomized controlled study. J. Int. Med. Res. 2018;46:4624–4633. doi: 10.1177/0300060518786918.
    1. Crha I., Hrubá D., Ventruba P., Fiala J., Totusek J., Visnová H. Ascorbic acid and infertility treatment. Cent. Eur. J. Public Health. 2003;11:63–67.
    1. Zhao J., Huang X., Xu B., Yan Y., Zhang Q., Li Y. Whether vitamin D was associated with clinical outcome after IVF/ICSI: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2018;16:13. doi: 10.1186/s12958-018-0324-3.
    1. Lv S.S., Wang J.Y., Wang X.Q., Wang Y., Xu Y. Serum vitamin D status and in vitro fertilization outcomes: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2016;293:1339–1345. doi: 10.1007/s00404-016-4058-1.
    1. Chu J., Gallos I., Tobias A., Tan B., Eapen A., Coomarasamy A. Vitamin D and assisted reproductive treatment outcome: A systematic review and meta-analysis. Hum. Reprod. 2018;33:65–80. doi: 10.1093/humrep/dex326.
    1. Vanni V.S., Vigano’ P., Somigliana E., Papaleo E., Paffoni A., Pagliardini L., Candiani M. Vitamin D and assisted reproduction technologies: Current concepts. Reprod. Biol. Endocrinol. 2014;12:47. doi: 10.1186/1477-7827-12-47.
    1. Laganà A.S., Vitale S.G., Ban Frangež H., Vrtačnik-Bokal E., D’Anna R. Vitamin D in human reproduction: The more, the better? An evidence-based critical appraisal. Eur. Rev. Med. Pharm. Sci. 2017;21:4243–4251.
    1. Paffoni A., Somigliana E., Sarais V., Ferrari S., Reschini M., Makieva S., Papaleo E., Viganò P. Effect of vitamin D supplementation on assisted reproduction technology (ART) outcomes and underlying biological mechanisms: Protocol of a randomized clinical controlled trial. The “supplementation of vitamin D and reproductive outcome” (SUNDRO) study. BMC Pregnancy Childbirth. 2019;19:395. doi: 10.1186/s12884-019-2538-6.
    1. Szymańska R., Nowicka B., Kruk J. Vitamin E—Occurrence, biosynthesis by plants and functions in human nutrition. Mini Rev. Med. Chem. 2017;17:1039–1052. doi: 10.2174/1389557516666160725094819.
    1. Attaran M., Pasqualotto E., Falcone T., Goldberg J.M., Miller K.F., Agarwal A., Sharma R.K. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int. J. Fertil. Womens Med. 2000;45:314–320.
    1. Wang X., Falcone T., Attaran M., Goldberg J.M., Agarwal A., Sharma R.K. Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertil. Steril. 2002;78:1272–1277. doi: 10.1016/S0015-0282(02)04236-X.
    1. Olson S.E., Seidel G.E., Jr. Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol. Reprod. 2000;62:248–252. doi: 10.1095/biolreprod62.2.248.
    1. Bahadori M.H., Sharami S.H., Fakor F., Milani F., Pourmarzi D., Dalil-Heirati S.F. Level of Vitamin E in follicular fluid and serum and oocyte morphology and embryo quality in patients undergoing IVF treatment. J. Fam. Reprod. Health. 2017;11:74–81.
    1. Fatemi F., Mohammadzadeh A., Sadeghi M.R., Akhondi M.M., Mohammadmoradi S., Kamali K., Lackpour N., Jouhari S., Zafadoust S., Mokhtar S., et al. Role of vitamin E and D3 supplementation in Intra-Cytoplasmic Sperm Injection outcomes of women with polycystic ovarian syndrome: A double blinded randomized placebo-controlled trial. Clin. Nutr. ESPEN. 2017;18:23–30. doi: 10.1016/j.clnesp.2017.01.002.
    1. Ozkaya M.O., Nazıroğlu M. Multivitamin and mineral supplementation modulates oxidative stress and antioxidant vitamin levels in serum and follicular fluid of women undergoing in vitro fertilization. Fertil. Steril. 2010;94:2465–2466. doi: 10.1016/j.fertnstert.2010.01.066.
    1. Youssef M.A., Abdelmoty H.I., Elashmwi H.A., Abduljawad E.M., Elghamary N., Magdy A., Mohesen M.N., Abdella R.M., Bar M.A., Gouda H.M., et al. Oral antioxidants supplementation for women with unexplained infertility undergoing ICSI/IVF: Randomized controlled trial. Hum. Fertil. 2015;18:38–42. doi: 10.3109/14647273.2014.927595.
    1. Cabry R., Merviel P., Madkour A., Lefranc E., Scheffler F., Desailloud R., Bach V., Benkhalifa M. The impact of endocrine disruptor chemicals on Oocyte/Embryo and clinical outcomes in IVF. Endocr. Connect. 2020 doi: 10.1530/EC-20-0135.
    1. Li Q., Zhao Z. Influence of N-acetyl-L-cysteine against bisphenol a on the maturation of mouse oocytes and embryo development: In vitro study. BMC Pharm. Toxicol. 2019;20:43. doi: 10.1186/s40360-019-0323-9.

Source: PubMed

Подписаться