Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19)

Yue Zhou, Jingwei Chi, Wenshan Lv, Yangang Wang, Yue Zhou, Jingwei Chi, Wenshan Lv, Yangang Wang

Abstract

The outbreak of the coronavirus disease 2019 (Covid-19) has become an evolving worldwide health crisis. With the rising prevalence of obesity and diabetes has come an increasing awareness of their impacts on infectious diseases, including increased risk for various infections, post-infection complications and mortality from critical infections. Although epidemiological and clinical characteristics of Covid-19 have been constantly reported, no article has systematically illustrated the role of obesity and diabetes in Covid-19, or how Covid-19 affects obesity and diabetes, or special treatment in these at-risk populations. Here, we present a synthesis of the recent advances in our understanding of the relationships between obesity, diabetes and Covid-19 along with the underlying mechanisms, and provide special treatment guidance for these at-risk populations.

Keywords: Covid-19; diabetes mellitus; obesity; severe coronavirus disease 2019.

Conflict of interest statement

The authors declare no potential conflict of interest.

© 2020 John Wiley & Sons Ltd.

References

    1. World Health Organization . Coronavirus disease (COVID‐19) outbreak. Available online: .
    1. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565‐574.
    1. Deng S‐Q, Peng H‐J. Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. J Clin Med. 2020;9(2):575.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‐506.
    1. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061‐1069.
    1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507‐513.
    1. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019‐nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382(10):970‐971.
    1. Phan LT, Nguyen TV, Luong QC, et al. Importation and human‐to‐human transmission of a novel coronavirus in Vietnam. N Engl J Med. 2020;382(9):872‐874.
    1. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382(13):1199‐1207.
    1. World Health Organization . Coronavirus disease (COVID‐2019) situation reports. Available online: .
    1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470‐473.
    1. Frydrych LM, Bian G, O'Lone DE, Ward PA, Delano MJ. Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality. J Leukoc Biol. 2018;104(3):525‐534.
    1. Talbot HK, Coleman LA, Crimin K, et al. Association between obesity and vulnerability and serologic response to influenza vaccination in older adults. Vaccine. 2012;30(26):3937‐3943.
    1. Tiwari S, Pratyush DD, Gahlot A, Singh SK. Sepsis in diabetes: A bad duo. Diabetes Metab Syndr Clin Res Rev. 2011;5(4):222‐227.
    1. Dixon AE, Peters U. The effect of obesity on lung function. Expert Rev Respir Med. 2018;12(9):755‐767.
    1. Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID‐19 in China. Clinic Res Cardiol. 2020;109:531‐538.
    1. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID‐19: evidence from meta‐analysis. Aging. 2020;12:6049‐6057.
    1. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS‐CoV‐2 pneumonia in Wuhan, China: a single‐centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475‐481.
    1. Booth CM, Matukas LM, Tomlinson GA, et al. Clinical features and short‐term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289(21):2801‐2809.
    1. Allard R, Leclerc P, Tremblay C, Tannenbaum T‐N. Diabetes and the severity of pandemic influenza a (H1N1) infection. Diabetes Care. 2010;33(7):1491‐1493.
    1. van den Brand JM, Smits SL, Haagmans BL. Pathogenesis of middle east respiratory syndrome coronavirus. J Pathol. 2015;235(2):175‐184.
    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID‐19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239‐1242.
    1. Remuzzi A, Remuzzi G. COVID‐19 and Italy: what next? Lancet. 2020;395:1225‐1228.
    1. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID‐19. Diabetes/Metabolism Research and Reviews. 2020;e3319. 10.1002/dmrr.3319.
    1. Yan Y, Yang Y, Wang F, et al. Clinical characteristics and outcomes of patients with severe covid‐19 with diabetes. BMJ Open Diabetes Res Care. 2020;8(1):e001343.
    1. Targher G, Mantovani A, Wang X.‐B, et al. Patients with diabetes are at higher risk for severe illness from COVID‐19. Diabetes & Metabolism. 2020. 10.1016/j.diabet.2020.05.001.
    1. Wang Z, Du Z, Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID‐19 patients. Diabetes Res Clin Pract. 2020;164:108214.
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID‐19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033‐1034.
    1. Maddaloni E, Buzzetti R. Covid‐19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes/Metabolism Research and Reviews. 2020;e33213321. 10.1002/dmrr.3321.
    1. McGonagle D, Sharif K, O'Regan A, Bridgewood C. The role of cytokines including interleukin‐6 in COVID‐19 induced pneumonia and macrophage activation syndrome‐like disease. Autoimmun Rev. 2020;19:102537.
    1. Liu Y, Du X, Chen J, et al. Neutrophil‐to‐lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID‐19. J Infect. 2020;81:e6‐e12.
    1. Chinese Clinical Trial Registry, A Multicenter, Randomized Controlled Trial for the Efficacy and Safety of Tocilizumab in the Treatment of New Coronavirus Pneumonia (COVID‐19) (2020). Accessed March 6, 2020.
    1. Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID‐19) in Wuhan, China. Clinical Infectious Diseases. 2020. 10.1093/cid/ciaa248.
    1. Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID‐19 patients. Cell Mol Immunol. 2020;17(5):541‐543.
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813‐820.
    1. Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J Diabetes. 2015;6(4):598‐612.
    1. Hatanaka E, Monteagudo PT, Marrocos MSM, Campa A. Neutrophils and monocytes as potentially important sources of proinflammatory cytokines in diabetes. Clin Exp Immunol. 2006;146(3):443‐447.
    1. Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15(1):675‐705.
    1. Torres‐Castro I, Arroyo‐Camarena ÚD, Martínez‐Reyes CP, et al. Human monocytes and macrophages undergo M1‐type inflammatory polarization in response to high levels of glucose. Immunol Lett. 2016;176:81‐89.
    1. Berrou J, Fougeray S, Venot M, et al. Natural killer cell function, an important target for infection and tumor protection, is impaired in type 2 diabetes. PloS One. 2013;8(4):e62418.
    1. Ge J, Jia Q, Liang C, et al. Advanced glycosylation end products might promote atherosclerosis through inducing the immune maturation of dendritic cells. Arterioscler Thromb Vasc Biol. 2005;25(10):2157‐2163.
    1. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29(1):415‐445.
    1. Frankie B, Stentz AEK, Activated T. Lymphocytes in type 2 diabetes: implications from in vitro studies. Curr Drug Targets. 2003;4(6):493‐503.
    1. Xia C, Rao X, Zhong J. Role of T lymphocytes in type 2 diabetes and diabetes‐associated inflammation. J Diabetes Res. 2017;2017:6494795.
    1. Meshkani R, Vakili S. Tissue resident macrophages: key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta. 2016;462:77‐89.
    1. Zeng C, Shi X, Zhang B, et al. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. J Mol Med. 2012;90(2):175‐186.
    1. McLaughlin T, Liu L‐F, Lamendola C, et al. T‐cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler Thromb Vasc Biol. 2014;34(12):2637‐2643.
    1. Garidou L, Pomié C, Klopp P, et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 2015;22(1):100‐112.
    1. Jagannathan‐Bogdan M, McDonnell ME, Shin H, et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol. 2011;186(2):1162‐1172.
    1. MacIver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol. 2008;84(4):949‐957.
    1. Srenathan U, Steel K, Taams LS. IL‐17+ CD8+ T cells: differentiation, phenotype and role in inflammatory disease. Immunol Lett. 2016;178:20‐26.
    1. Nishimura S, Manabe I, Nagasaki M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914‐920.
    1. Miya A, Nakamura A, Miyoshi H, et al. Impact of Glucose Loading on Variations in CD4+ and CD8+ T Cells in Japanese Participants with or without Type 2 Diabetes. Frontiers in Endocrinology. 2018;9:81. 10.3389/fendo.2018.00081.
    1. Kintscher U, Hartge M, Hess K, et al. T‐lymphocyte infiltration in visceral adipose tissue. Arterioscler Thromb Vasc Biol. 2008;28(7):1304‐1310.
    1. Gerriets VA, MacIver NJ. Role of T cells in malnutrition and obesity. Front Immunol. 2014;5(379). 10.3389/fimmu.2014.00379
    1. Kida K, Utsuyama M, Takizawa T, Thurlbeck WM. Changes in lung morphologic features and elasticity caused by streptozotocin‐induced diabetes mellitus in growing rats. Am Rev Respir Dis. 1983;128(1):125.
    1. Teeter JG, Riese RJ. Cross‐sectional and prospective study of lung function in adults with type 2 diabetes: the atherosclerosis risk in communities (ARIC) study Response to Yeh Et al. Diabetes Care. 2008;31(10):e82‐e82.
    1. Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and type 2 diabetes mellitus. Diabet Med. 2010;27(9):977‐987.
    1. Zheng H, Wu J, Jin Z, Yan L‐J. Potential biochemical mechanisms of lung injury in diabetes. Aging Dis. 2017;8(1):7‐16.
    1. Williams JG, Morris AI, Hayter RC, Ogilvie CM. Respiratory responses of diabetics to hypoxia, hypercapnia, and exercise. Thorax. 1984;39(7):529‐534.
    1. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265‐269.
    1. Wrapp D, Wang N, Corbett KS, et al. Cryo‐EM structure of the 2019‐nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260‐1263.
    1. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin‐converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1‐9. Circ Res. 2000;87(5):e1‐e9.
    1. Gembardt F, Sterner‐Kock A, Imboden H, et al. Organ‐specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides. 2005;26(7):1270‐1277.
    1. Riordan JF. Angiotensin‐I‐converting enzyme and its relatives. Genome Biol. 2003;4(8):225.
    1. Kruglikov IL, Scherer PE. The role of adipocytes and adipocyte‐like cells in the severity of COVID‐19 infections. Obesity. 2020;28:1187‐1190.
    1. Roca‐Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci. 2017;18(3):563.
    1. Malavazos AE, Corsi Romanelli MM, Bandera F, Iacobellis G. Targeting the adipose tissue in COVID‐19. Obesity. 2020;28(7):1178‐1179.
    1. Burns KD, Lytvyn Y, Mahmud FH, et al. The relationship between urinary renin‐angiotensin system markers, renal function, and blood pressure in adolescents with type 1 diabetes. Am J Physiol Renal Physiol. 2017;312(2):F335‐f342.
    1. Gutta S, Grobe N, Kumbaji M, et al. Increased urinary angiotensin converting enzyme 2 and neprilysin in patients with type 2 diabetes. Am J Physiol Renal Physiol. 2018;315(2):F263‐f274.
    1. Liang Y, Deng H, Bi S, et al. Urinary angiotensin converting enzyme 2 increases in patients with type 2 diabetic mellitus. Kidney Blood Press Res. 2015;40(2):101‐110.
    1. Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin‐angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125:21‐38.
    1. Yang P, Gu H, Zhao Z, et al. Angiotensin‐converting enzyme 2 (ACE2) mediates influenza H7N9 virus‐induced acute lung injury. Sci Rep. 2014;4:7027.
    1. Gupta R, Hussain A, Misra A. Diabetes and COVID‐19: evidence, current status and unanswered research questions. Eur J Clin Nut. 2020;74:864‐870.
    1. Ji HL, Zhao R, Matalon S, Matthay MA. Elevated plasmin(ogen) as a common risk factor for COVID‐19 susceptibility. Physiol Rev. 2020;100(3):1065‐1075.
    1. Fernandez C, Rysa J, Almgren P, Nilsson J. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med. 2018;284(4):377‐387.
    1. Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS‐CoV‐2. J Endocrinol Invest. 2020;43(6):867‐869.
    1. Zhou J, Tan J. Diabetes patients with COVID‐19 need better blood glucose management in Wuhan, China. Metabol Clinic Experiment. 2020;107:154216.
    1. Zhang Y, Li H, Zhang J, et al. The clinical characteristics and outcomes of diabetes mellitus and secondary hyperglycaemia patients with coronavirus disease 2019: a single‐center, retrospective, observational study in wuhan. Diabetes Obes Metab. 2020. 10.1111/dom.14086
    1. Poston JT, Patel BK, Davis AM. Management of critically ill adults with COVID‐19. JAMA. 2020;323(18):1839–1841.
    1. Jaeckel E, Manns M, Von Herrath M. Viruses and diabetes. Ann N Y Acad Sci. 2002;958:7‐25.
    1. Jali MV, Shankar PS. Transient diabetes following chicken pox. J Assoc Physicians India. 1990;38(9):663‐664.
    1. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193‐199.
    1. Wang F, Wang H, Fan J, et al. Pancreatic Injury Patterns in Patients With Coronavirus Disease 19 Pneumonia. Gastroenterology. 2020. 10.1053/j.gastro.2020.03.055.
    1. Liu F, Long X, Zhang B, et al. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS‐CoV‐2 Infection. Clinical Gastroenterology and Hepatology. 2020. 10.1016/j.cgh.2020.04.040.
    1. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631‐637.
    1. The Chinese Diabetes Society . Expert recommendation on blood glucose management strategies for diabetes mellitus with new coronavirus pneumonia. Available online: .
    1. Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin‐converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin‐converting enzyme 2. Circulation. 2005;111(20):2605‐2610.
    1. Imai Y, Kuba K, Rao S, et al. Angiotensin‐converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112‐116.
    1. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005;11(8):875‐879.
    1. Peng YD, Meng K, Guan HQ, et al. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019‐nCoV. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48(0):E004.
    1. Gurwitz D. Angiotensin receptor blockers as tentative SARS‐CoV‐2 therapeutics. Drug Development Research. 2020. 10.1002/ddr.21656.
    1. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID‐19 infection? Lancet Respir Med. 2020;8(4):e21.
    1. European Society of Cardiology . Position Statement of the ESC council on hypertension on ACE‐Inhibitors and angiotensin receptor blockers. .
    1. American Heart Association . HFSA/ACC/AHA statement addresses concerns re: using RAAS antagonists in COVID‐19. .
    1. Al‐Qahtani AA, Lyroni K, Aznaourova M, et al. Middle east respiratory syndrome corona virus spike glycoprotein suppresses macrophage responses via DPP4‐mediated induction of Irak‐M and PPARγ. Oncotarget. 2017;8(6):9053‐9066.
    1. Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus‐EMC. Nature. 2013;495(7440):251‐254.
    1. Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS‐CoV infection. JCI Insight. 2019;4(20):e131774.
    1. Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase‐4 inhibitors. Endocr Rev. 2014;35(6):992‐1019.
    1. Fadini GP, Morieri ML, Longato E, et al. Exposure to dipeptidyl‐peptidase‐4 inhibitors andCOVID‐19 among people with type 2 diabetes: A case‐control study. Diabetes, Obesity and Metabolism. 2020. 10.1111/dom.14097.
    1. Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID‐19 epidemic. Diabetes Mmetabol Syndrome. 2020;14(3):211‐212.
    1. Hamblin PS, Wong R, Ekinci EI, et al. SGLT2 inhibitors increase the risk of diabetic ketoacidosis developing in the community and during hospital admission. J Clin Endocrinol Metabol. 2019;104(8):3077‐3087.
    1. Díaz E, Rodríguez A, Martin‐Loeches I, et al. Impact of obesity in patients infected with 2009 influenza a(H1N1). Chest. 2011;139(2):382‐386.
    1. Louie JK, Acosta M, Samuel MC, et al. A novel risk factor for a novel virus: obesity and 2009 pandemic influenza a (H1N1). Clin Infect Dis. 2011;52(3):301‐312.
    1. Nave H, Beutel G, Kielstein JT. Obesity‐related immunodeficiency in patients with pandemic influenza H1N1. Lancet Infect Dis. 2011;11(1):14‐15.
    1. Nguyen‐Van‐Tam JS, Openshaw PJM, Hashim A, et al. Risk factors for hospitalisation and poor outcome with pandemic a/H1N1 influenza: United Kingdom first wave (may–September 2009). Thorax. 2010;65(7):645‐651.
    1. Twig G, Geva N, Levine H, et al. Body mass index and infectious disease mortality in midlife in a cohort of 2.3 million adolescents. Int J Obes. 2018;42(4):801‐807.
    1. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID‐19 in the new York City area. JAMA. 2020;323:2052.
    1. WHO. Global Health Obsevatory (GHO) Data: Overweight and Obesity. 2017. Accessed April 29, 2020.
    1. Lighter J, Phillips M, Hochman S, et al. Obesity in Patients Younger Than 60 Years Is a Risk Factor for COVID‐19 Hospital Admission. Clinical Infectious Diseases. 2020. 10.1093/cid/ciaa415.
    1. ICNARC Report on COVID‐19 in Critical Care. 2020. .
    1. Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) requiring invasive mechanical ventilation. Obesity. 2020;28(7):1195–1199.
    1. Gao F, Zheng KI, Wang XB, et al. Obesity Is a risk factor for greater COVID‐19 severity. Diabetes Care. 2020;43(7):e72–e74.
    1. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9(5):367‐377.
    1. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860‐867.
    1. Ryan PM, Caplice NMI. Adipose tissue a reservoir for viral spread, immune activation and cytokine amplification in COVID‐19. Obesity. 2020;28:1191‐1194.
    1. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2003;100(12):7265‐7270.
    1. Lagathu C, Yvan‐Charvet L, Bastard J‐P, et al. Long‐term treatment with interleukin‐1β induces insulin resistance in murine and human adipocytes. Diabetologia. 2006;49(9):2162‐2173.
    1. Frasca D, Blomberg B, Paganelli R. Aging, obesity, and inflammatory age‐related diseases. Front Immunol. 2017;8:1754.
    1. Na H‐N, Nam J‐H. Adenovirus 36 as an obesity agent maintains the obesity state by increasing MCP‐1 and inducing inflammation. J Infect Dis. 2012;205(6):914‐922.
    1. Pasarica M, Shin AC, Yu M, et al. Human adenovirus 36 induces adiposity, increases insulin sensitivity, and alters hypothalamic monoamines in rats. Obesity. 2006;14(11):1905‐1913.
    1. Patel VB, Basu R, Oudit GY. ACE2/Ang 1‐7 axis: a critical regulator of epicardial adipose tissue inflammation and cardiac dysfunction in obesity. Adipocyte. 2016;5(3):306‐311.
    1. Watanabe M, Risi R, Tuccinardi D, Baquero CJ, Manfrini S, Gnessi L. Obesity and SARS‐CoV‐2: a population to safeguard. Diabetes Metab Res Rev. 2020;e3325. 10.1002/dmrr.3325
    1. Frasca D, McElhaney J. Influence of obesity on pneumococcus infection risk in the elderly. Front Endocrinol. 2019;10:71‐71.
    1. Ahn S‐Y, Sohn S‐H, Lee S‐Y, et al. The effect of lipopolysaccharide‐induced obesity and its chronic inflammation on influenza virus‐related pathology. Environ Toxicol Pharmacol. 2015;40(3):924‐930.
    1. Cho WJ, Lee DK, Lee SY, et al. Diet‐induced obesity reduces the production of influenza vaccine‐induced antibodies via impaired macrophage function. Acta Virol. 2016;60(3):298‐306.
    1. Macia L, Delacre M, Abboud G, et al. Impairment of dendritic cell functionality and steady‐state number in obese mice. J Immunol. 2006;177(9):5997‐6006.
    1. Michalakis K, Ilias I. SARS‐CoV‐2 infection and obesity: common inflammatory and metabolic aspects. Diabetes Metabol Syndrome. 2020;14(4):469‐471.
    1. Martí A, Marcos A, Martínez JA. Obesity and immune function relationships. Obes Rev. 2001;2(2):131‐140.
    1. Cava AL, Matarese G. The weight of leptin in immunity. Nat Rev Immunol. 2004;4(5):371‐379.
    1. Howard JK, Lord GM, Matarese G, et al. Leptin protects mice from starvation‐induced lymphoid atrophy and increases thymic cellularity in Ob/Ob mice. J Clin Invest. 1999;104(8):1051‐1059.
    1. Bennett BD, Solar GP, Yuan JQ, Mathias J, Thomas GR, Matthews W. A role for leptin and its cognate receptor in hematopoiesis. Curr Biol. 1996;6(9):1170‐1180.
    1. Mattioli B, Straface E, Quaranta MG, Giordani L, Viora M. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J Immunol. 2005;175(5):3446‐3446.
    1. Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70(1):537‐556.
    1. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093‐1103.
    1. Ouchi N, Walsh K. Adiponectin as an anti‐inflammatory factor. Clin Chim Acta. 2007;380(1):24‐30.
    1. Teoh H, Quan A, Bang KWA, et al. Adiponectin deficiency promotes endothelial activation and profoundly exacerbates sepsis‐related mortality. Am J Physiol‐Endocrinol Metabol. 2008;295(3):E658‐E664.
    1. O'Rourke RW, Kay T, Scholz MH, et al. Alterations in T‐cell subset frequency in peripheral blood in obesity. Obes Surg. 2005;15(10):1463‐1468.
    1. Paich HA, Sheridan PA, Handy J, et al. Overweight and obese adult humans have a defective cellular immune response to pandemic H1N1 influenza a virus. Obesity. 2013;21(11):2377‐2386.
    1. Rebeles J, Green WD, Alwarawrah Y, et al. Obesity‐induced changes in T‐cell metabolism are associated with impaired memory T‐cell response to influenza and are not reversed with weight loss. J Infect Dis. 2018;219(10):1652‐1661.
    1. Costanzo AE, Taylor KR, Dutt S, Han PP, Fujioka K, Jameson JM. Obesity impairs γδ T cell homeostasis and antiviral function in humans. PloS One. 2015;10(3):e0120918‐e0120918.
    1. Karlsson EA, Sheridan PA, Beck MA. Diet‐induced obesity in mice reduces the maintenance of influenza‐specific CD8+ memory T cells. J Nutr. 2010;140(9):1691‐1697.
    1. Misumi I, Starmer J, Uchimura T, Beck MA, Magnuson T, Whitmire JK. Obesity expands a distinct population of T cells in adipose tissue and increases vulnerability to infection. Cell Rep. 2019;27(2):514‐524.e515.
    1. DeFuria J, Belkina AC, Jagannathan‐Bogdan M, et al. B cells promote inflammation in obesity and type 2 diabetes through regulation of T‐cell function and an inflammatory cytokine profile. Proc Natl Acad Sci. 2013;110(13):5133‐5138.
    1. Gralinski LE, Sheahan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9(5):e01753‐e01718.
    1. Karkhaneh M, Qorbani M, Mohajeri‐Tehrani MR, Hoseini S. Association of serum complement C3 with metabolic syndrome components in normal weight obese women. J Diabetes Metab Disord. 2017;16:49.
    1. Ashburn DD, DeAntonio A, Reed MJ. Pulmonary system and obesity. Crit Care Clin. 2010;26(4):597‐602.
    1. Rutting S, Mahadev S, Tonga KO, et al. Obesity alters the topographical distribution of ventilation and the regional response to bronchoconstriction. J Appl Physiol. 2020;128(1):168‐177.
    1. Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with underweight, overweight, and obesity. JAMA. 2005;293(15):1861‐1867.
    1. Movahed MR, Khoubyari R, Hashemzadeh M, Hashemzadeh M. Obesity is strongly and independently associated with a higher prevalence of pulmonary embolism. Respir Investig. 2019;57(4):376‐379.
    1. Yvan‐Charvet L, Quignard‐Boulangé A. Role of adipose tissue renin–angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int. 2011;79(2):162‐168.
    1. Engström G, Hedblad B, Stavenow L, Lind P, Janzon L, Lindgärde F. Inflammation‐sensitive plasma proteins are associated with future weight gain. Diabetes. 2003;52(8):2097‐2101.
    1. Gupte M, Boustany‐Kari CM, Bharadwaj K, et al. ACE2 is expressed in mouse adipocytes and regulated by a high‐fat diet. Am J Physiol Regul Integr Comp Physiol. 2008;295(3):R781‐R788.
    1. Pinheiro TA, Barcala‐Jorge AS, Andrade JMO, et al. Obesity and malnutrition similarly alter the renin–angiotensin system and inflammation in mice and human adipose. J Nutr Biochem. 2017;48:74‐82.
    1. Honce R, Karlsson EA, Wohlgemuth N, et al. Obesity‐related microenvironment promotes emergence of virulent influenza virus strains. MBio. 2020;11(2):e03341‐e03319.
    1. Lauring AS, Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010;6(7):e1001005‐e1001005.
    1. Maier HE, Lopez R, Sanchez N, et al. besity increases the duration of influenza a virus shedding in adults. J Infect Dis. 2018;218(9):1378‐1382.
    1. Domingo E. RNA virus evolution, population dynamics, and nutritional status. Biol Trace Elem Res. 1997;56(1):23‐30.
    1. Xu L, Borges MC, Hemani G, Lawlor DA. The role of glycaemic and lipid risk factors in mediating the effect of BMI on coronary heart disease: a two‐step, two‐sample Mendelian randomisation study. Diabetologia. 2017;60(11):2210‐2220.
    1. Jiang CQ, Xu L, Zhang WS, Jin YL, Zhu F, Cheng KK. Adiposity and mortality in older Chinese: an 11‐year follow‐up of the Guangzhou biobank cohort study. Sci Rep. 2020;10(1):1924.
    1. Xu L, Lam TH, Jiang CQ, et al. Adiposity and incident diabetes within 4 years of follow‐up: the Guangzhou biobank cohort study. Diabetic Med. 2017;34(10):1400‐1406.
    1. Kass DA, Duggal P, Cingolani O. Obesity could shift severe COVID‐19 disease to younger ages. Lancet. 2020;395:1544‐1545.
    1. Dhurandhar NV, Israel BA, Kolesar JM, Mayhew GF, Cook ME, Atkinson RL. Increased adiposity in animals due to a human virus. Int J Obes. 2000;24(8):989‐996.
    1. Atkinson RL, Dhurandhar NV, Allison DB, et al. Human adenovirus‐36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes. 2005;29(3):281‐286.
    1. Vangipuram SD, Yu M, Tian J, et al. Adipogenic human adenovirus‐36 reduces leptin expression and secretion and increases glucose uptake by fat cells. Int J Obes. 2007;31(1):87‐96.
    1. Vangipuram SD, Sheele J, Atkinson RL, Holland TC, Dhurandhar NV. A human adenovirus enhances Preadipocyte differentiation. Obes Res. 2004;12(5):770‐777.
    1. Šestan M, Marinović S, Kavazović I, et al. Virus‐induced interferon‐γ causes insulin resistance in skeletal muscle and derails glycemic control in obesity. Immunity. 2018;49(1):164‐177.
    1. Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U. Metabolic effects of influenza virus infection in cultured animal cells: intra‐ and extracellular metabolite profiling. BMC Syst Biol. 2010;4(1):61.
    1. Ying W, Fu W, Lee YS, Olefsky JM. The role of macrophages in obesity‐associated islet inflammation and β‐cell abnormalities. Nat Rev Endocrinol. 2020;16(2):81‐90.
    1. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS‐Coronavirus‐2. Int J Infect Dis. 2020;94:55‐58.
    1. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID‐19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420‐422.
    1. Koball AM, Clark MM, Collazo‐Clavell M, et al. The relationship among food addiction, negative mood, and eating‐disordered behaviors in patients seeking to have bariatric surgery. Surg Obes Relat Dis. 2016;12(1):165‐170.
    1. Honce R, Schultz‐Cherry S. Impact of obesity on influenza a virus pathogenesis, immune response, and evolution. Front Immunol. 2019;10:1071.
    1. Chairat K, Jittamala P, Hanpithakpong W, et al. Population pharmacokinetics of oseltamivir and oseltamivir carboxylate in obese and non‐obese volunteers. Br J Clin Pharmacol. 2016;81(6):1103‐1112.
    1. Pai MP, Lodise TP. Oseltamivir and oseltamivir carboxylate pharmacokinetics in obese adults: dose modification for weight is not necessary. Antimicrob Agents Chemother. 2011;55(12):5640‐5645.
    1. Luzi L, Radaelli MG. Influenza and obesity: its odd relationship and the lessons for COVID‐19 pandemic. Acta Diabetol. 2020;57:759‐764.
    1. Zheng Q, Cui G, Chen J, et al. Regular exercise enhances the immune response against microbial antigens through up‐regulation of toll‐like receptor signaling pathways. Cell Physiol Biochem. 2015;37(2):735‐746.
    1. Rahmati‐Ahmadabad S, Hosseini F. Exercise against SARS‐CoV‐2 (COVID‐19): does workout intensity matter? (a mini review of some indirect evidence related to obesity). Obesity Med. 2020;100245.
    1. Qiao X, Zhou ZC, Niu R, et al. Hydroxychloroquine improves obesity‐associated insulin resistance and hepatic steatosis by regulating lipid metabolism. Front Pharmacol. 2019;10:855.
    1. Peymani P, Ghavami S, Yeganeh B, et al. Effect of chloroquine on some clinical and biochemical parameters in non‐response chronic hepatitis C virus infection patients: pilot clinical trial. Acta Bio‐Med. 2016;87(1):46‐53.
    1. Tanaka T, Nakazawa H, Kuriyama N, Kaneki M. Farnesyltransferase inhibitors prevent HIV protease inhibitor (lopinavir/ritonavir)‐induced lipodystrophy and metabolic syndrome in mice. Exp Ther Med. 2018;15(2):1314‐1320.
    1. Pistell PJ, Gupta S, Knight AG, et al. Metabolic and neurologic consequences of chronic lopinavir/ritonavir administration to C57BL/6 mice. Antiviral Res. 2010;88(3):334‐342.
    1. Li YN, Su Y. Remdesivir attenuates high fat diet (HFD)‐induced NAFLD by regulating hepatocyte dyslipidemia and inflammation via the suppression of STING. Biochem Biophys Res Commun. 2020;526(2):381‐388.
    1. Emiralioğlu N, Öztürk Z, Yalçın E, Doğru D, Özçelik U, Kiper N. Long term azithromycin therapy in patients with cystic fibrosis. Turk J Pediatr. 2016;58(1):34‐40.
    1. Berthon BS, MacDonald‐Wicks LK, Wood LG. A systematic review of the effect of oral glucocorticoids on energy intake, appetite, and body weight in humans. Nut Res. 2014;34(3):179‐190.
    1. Aljebab F, Choonara I, Conroy S. Systematic review of the toxicity of Long‐course Oral corticosteroids in children. PloS One. 2017;12(1):e0170259.

Source: PubMed

Подписаться