Contemporary Approach to Heavily Calcified Coronary Lesions

Carlotta Sorini Dini, Giulia Nardi, Francesca Ristalli, Alessio Mattesini, Brunilda Hamiti, Carlo Di Mario, Carlotta Sorini Dini, Giulia Nardi, Francesca Ristalli, Alessio Mattesini, Brunilda Hamiti, Carlo Di Mario

Abstract

Percutaneous treatment of heavily calcified coronary lesions still represents a challenge for interventional cardiology, with higher risk of immediate complications, late failure due to stent underexpansion and malapposition, and consequently poor clinical outcome. Good characterisation of calcium distribution with multimodal imaging is important to improve the successful treatment of these lesions. The use of traditional or new dedicated devices for the treatment of calcified lesions allows better lesion preparation; therefore, it is important that we know the different mechanisms and technical features of these devices.

Keywords: Coronary calcified lesion; atherectomy; coronary angioplasty; intravascular ultrasound; lithotripsy; optical coherence tomography; outcome.

Conflict of interest statement

Disclosure: The authors have no conflicts of interest to declare.

Copyright © 2019, Radcliffe Cardiology.

Figures

Figure 1:. Representative Images Obtained Using the…
Figure 1:. Representative Images Obtained Using the Different Imaging Techniques
Figure 2:. Decision Algorithm for the Treatment…
Figure 2:. Decision Algorithm for the Treatment of Calcified Coronary Lesions

References

    1. Parry CH. Cruttwell, London, UK: 1799. An inquiry into the symptoms and causes of the syncope anginosa, commonly called angina pectoris; p. p.2.
    1. Byrne RA, Capodanno D, Mylotte D, Serruys PW. State of the art: 40 years of percutaneous cardiac intervention. EuroIntervention. 2017;13:621–4. doi: 10.4244/EIJV13I6A98.
    1. Mintz GS. Intravascular imaging of coronary calcification and its clinical implications. JACC Cardiovasc Imaging. 2015;8:461–71. doi: 10.1016/j.jcmg.2015.02.003.
    1. Wang X, Matsumura M, Mintz GS et al. In vivo calcium detection by comparing optical coherence tomography, intravascular ultrasound, and angiography. Am J Coll Cardiol Imaging. 2017;10:869–79. doi: 10.1016/j.jcmg.2017.05.014.
    1. Nakahara T, Dweck MR, Narula N et al. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging. 2017;10:582–93. doi: 10.1016/j.jcmg.2017.03.005.
    1. Mori H, Torii S, Kutyna M et al. Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging. 2018;11:127–42. doi: 10.1016/j.jcmg.2017.10.012.
    1. Sage AP, Tintut Y, Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol. 2010;7:528–36. doi: 10.1038/nrcardio.2010.115.
    1. Nakahara T, Narula J, Strauss HW. Calcification and inflammation in atherosclerosis: which is the chicken, and which is the egg? Am J Coll Cardiol. 2016;67:79–80. doi: 10.1016/j.jacc.2015.11.014.
    1. Nakahara T, Strauss HW. From inflammation to calcification in atherosclerosis. Eur J Nucl Med Mol Imaging. 2017;44:858–60. doi: 10.1007/s00259-016-3608-x.
    1. Detrano R, Guerci AD, Carr JJ et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45. doi: 10.1056/NEJMoa072100.
    1. Agarwal S, Cox AJ, Herrington DM et al. Coronary calcium score predicts cardiovascular mortality in diabetes: diabetes heart study. Diabetes Care. 2013;36:972–7. doi: 10.2337/dc12-1548.
    1. Elias-Smale SE, Proenca RV, Koller MT et al. Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. Am J Coll Cardiol. 2010;56:1407–14. doi: 10.1016/j.jacc.2010.06.029.
    1. Budoff MJ, Young R, Lopez VA et al. Progression of coronary calcium and incident coronary heart disease events: MESA (Multi-Ethnic Study of Atherosclerosis) Am J Coll Cardiol. 2013;61:1231–9. doi: 10.1016/j.jacc.2012.12.035.
    1. Budoff MJ, Young R, Burke G et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the Multi-Ethnic Study of Atherosclerosis (MESA) Eur Heart J. 2018;39:2401–8. doi: 10.1093/eurheartj/ehy217.
    1. Faggiano P, Dasseni N, Gaibazzi N et al. Cardiac calcification as a marker of subclinical atherosclerosis and predictor of cardiovascular events: a review of the evidence. Eur J Prev Cardiol. 2019;26:1191–204. doi: 10.1177/2047487319830485.
    1. Giustino G, Mastoris I, Baber U et al. Correlates and impact of coronary artery calcifications in women undergoing percutaneous coronary intervention with drug-eluting stents: from the Women in Innovation and Drug-Eluting Stents (WIN-DES) Collaboration. JACC Cardiovasc Interv. 2016;9:1890–901. doi: 10.1016/j.jcin.2016.06.022.
    1. Huisman J, van der Heijden LC, Kok MM et al. Two-year outcome after treatment of severely calcified lesions with newer-generation drug-eluting stents in acute coronary syndromes: a patient-level pooled analysis from TWENTE and DUTCH PEERS. J Cardiol. 2017;69:660–5. doi: 10.1016/j.jjcc.2016.06.010.
    1. Copeland-Halperin RS, Baber U, Aquino M et al. Prevalence, correlates, and impact of coronary calcification on adverse events following PCI with newer-generation DES: findings from a large multiethnic registry. Catheter Cardiovasc Interv. 2018;91:859–66. doi: 10.1002/ccd.27204.
    1. Bourantas CV, Zhang YJ, Garg S et al. Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: a patient-level pooled analysis of 7 contemporary stent trials. Heart. 2014;100:1158–64. doi: 10.1136/heartjnl-2013-305180.
    1. Généreux P, Redfors B, Witzenbichler B et al. Two-year outcomes after percutaneous coronary intervention of calcified lesions with drug-eluting stents. Int J Cardiol. 2017;231:61–7. doi: 10.1016/j.ijcard.2016.12.150.
    1. Park DW. Severe calcified coronary lesion: the next target. Presented at TCT (Transcatheter Cardiovascular Therapeutics) congress, Denver, CO, US, 29 October–2 November 2017
    1. Busse A, Cantré D, Beller E Cardiac CT: why, when, and how: update 2019. Radiologe. 2019. epub ahead of press.
    1. Willemink MJ, Leiner T, Maurovich-Horvat P. Cardiac CT imaging of plaque vulnerability: hype or hope? Curr Cardiol Rep. 2016;18:37. doi: 10.1007/s11886-016-0714-0.
    1. Hoffmann R, Mintz GS, Popma JJ et al. Treatment of calcified coronary lesions with Palmaz-Schatz stents. An intravascular ultrasound study. Eur Heart J. 1998;19:1224–31. doi: 10.1053/euhj.1998.1028.
    1. Räber L, Mintz GS, Koskinas KC Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention. 2018.
    1. Fujino A, Mintz GS, Matsumura M et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention. 2018;13:e2182–9. doi: 10.4244/EIJ-D-17-00962.
    1. Kassimis G, Raina T, Kontogiannis N How should we treat heavily calcified coronary artery disease in contemporary practice? From atherectomy to intravascular lithotripsy. Cardiovasc Revasc Med. 2019.
    1. Di Mario C, Ramasami N. Techniques to enhance guide catheter support. Catheter Cardiovasc Interv. 2008;72:505–12. doi: 10.1002/ccd.21670.
    1. Costopoulos C, Naganuma T, Colombo A. Tools and techniques clinical: percutaneous intervention of calcific coronary lesions. EuroIntervention. 2014;9:1124–6. doi: 10.4244/EIJV9I9A188.
    1. Seth A, Gupta S, Pratap Singh V, Kumar V. Expert opinion: optimising stent deployment in contemporary practice: the role of intracoronary imaging and non-compliant balloons. Interv Cardiol. 2017;12:81–4. doi: 10.15420/icr.2017:12:1.
    1. Raja Y, Routledge HC, Doshi SN. A non compliant, high pressure balloon to manage undilatable coronary lesions. Catheter Cardiovasc Interv. 2010;75:1067–73. doi: 10.1002/ccd.22430.
    1. Secco GG, Ghione M, Mattesini A et al. Very high-pressure dilatation for undilatable coronary lesions: indications and results with a new dedicated balloon. EuroIntervention. 2016;12:359–65. doi: 10.4244/EIJY15M06_04.
    1. Secco GG, Buettner A, Parisi R Clinical experience with very high-pressure dilatation for resistant coronary lesions. Cardiovasc Revasc Med. 2019.
    1. Barath P, Fishbein MC, Vari S, Forrester JS. Cutting balloon: a novel approach to percutaneous angioplasty. Am J Cardiol. 1991;68:1249–52. doi: 10.1016/0002-9149(91)90207-2.
    1. Okura H, Hayase M, Shimodozono S et al. Restenosis reduction by cutting balloon evaluation. Mechanisms of acute lumen gain following cutting balloon angioplasty in calcified and noncalcified lesions: an intravascular ultrasound study. Catheter Cardiovasc Interv. 2002;57:429–36. doi: 10.1002/ccd.10344.
    1. Mauri L, Bonan R, Weiner BH et al. Cutting balloon angioplasty for the prevention of restenosis: results of the Cutting Balloon Global Randomized Trial. Am J Cardiol. 2002;90:1079–83. doi: 10.1016/S0002-9149(02)02773-X.
    1. Neumann FJ, Sousa-Uva M, Ahlsson A et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165. doi: 10.1093/eurheartj/ehy394.
    1. Patel MR, Calhoon JH, Dehmer GJ et al. 2016 Appropriate use criteria for coronary revascularization in patients with acute coronary syndromes: a report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and the Society of Thoracic Surgeons. Am J Coll Cardiol. 2017;69:570–91. doi: 10.1007/s12350-017-0780-8.
    1. Sadamatsu K, Yoshida K, Yoshidomi Y et al. Comparison of pre-dilation with a non-compliant balloon versus a dual wire scoring balloon for coronary stenting. World J Cardiovasc Dis. 2013;3:395–400. doi: 10.4236/wjcd.2013.36061.
    1. Jujo K, Saito K, Ishida I et al. Intimal disruption affects drug-eluting cobalt-chromium stent expansion: a randomized trial comparing scoring and conventional balloon predilation. Int J Cardiol. 2016;221:23–31. doi: 10.1016/j.ijcard.2016.07.002.
    1. Fonseca A, Costa Jde R Jr, Abizaid A et al. Intravascular ultrasound assessment of the novel AngioSculpt scoring balloon catheter for the treatment of complex coronary lesions. J Invasive Cardiol. 2008;20:21–7.
    1. Kanai T, Hiro T, Takayama T et al. Three-dimensional visualization of scoring mechanism of ‘AngioSculpt’ balloon for calcified coronary lesions using optical coherence tomography. J Cardiol Cases. 2011;5:e16–9. doi: 10.1016/j.jccase.2011.10.008.
    1. Singh AS, Kirtane AJ, Moses JW. AngioSculpt® scoring balloon catheter: an atherotomy device for coronary and peripheral interventions. Interv Cardiol. 2010;2:469–78. doi: 10.2217/ica.10.51.
    1. de Ribamar Costa J Jr, Mintz GS, Carlier SG et al. Nonrandomized comparison of coronary stenting under intravascular ultrasound guidance of direct stenting without predilation versus conventional predilation with a semi-compliant balloon versus predilation with a new scoring balloon. Am J Cardiol. 2007;100:812–7. doi: 10.1016/j.amjcard.2007.03.100.
    1. Ashida K, Hayase T, Shinmura T. Efficacy of lacrosse NSE using the ‘leopard-crawl’ technique on severely calcified lesions. J Invasive Cardiol. 2013;25:555–564.
    1. Kawase Y, Saito N, Watanabe S et al. Utility of a scoring balloon for a severely calcified lesion: bench test and finite element analysis. Cardiovasc Interv Ther. 2014;29:134–9. doi: 10.1007/s12928-013-0232-6.
    1. Otsuka Y, Koyama T, Imoto Y et al. Prolonged inflation technique using a scoring balloon for severe calcified lesion. Int Heart J. 2017;58:982–7. doi: 10.1536/ihj.16-605.
    1. Abdel-Wahab M, Toelg R, Byrne RA et al. High-speed rotational atherectomy versus modified balloons prior to drug-eluting stent implantation in severely calcified coronary lesions. Circ Cardiovasc Interv. 2018;11:e007415. doi: 10.1161/CIRCINTERVENTIONS.118.007415.
    1. Fourrier JL, Bertrand ME, Auth DC et al. Percutaneous coronary rotational angioplasty in humans: preliminary report. Am J Coll Cardiol. 1989;14:1278–82. doi: 10.1016/0735-1097(89)90428-2.
    1. Reifart N, Vandormael M, Krajcar M et al. Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer Laser, Rotational Atherectomy, and Balloon Angioplasty Comparison (ERBAC) Study. Circulation. 1997;96:91–8. doi: 10.1161/01.CIR.96.1.91.
    1. Levine GN, Bates ER, Blankenship JC et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv. 2012;79:453–95. doi: 10.1002/ccd.23438.
    1. Barbato E, Shlofmitz E, Milkas A et al. State of the art: evolving concepts in the treatment of heavily calcified and undilatable coronary stenoses – from debulking to plaque modification, a 40-year-long journey. EuroIntervention. 2017;13:696–705. doi: 10.4244/EIJ-D-17-00473.
    1. Sakakura K, Yamamoto K, Taniguchi Y et al. Intravascular ultrasound enhances the safety of rotational atherectomy. Cardiovasc Revasc Med. 2018;19:286–91. doi: 10.1016/j.carrev.2017.09.012.
    1. Kini AS, Vengrenyuk Y, Pena J et al. Optical coherence tomography assessment of the mechanistic effects of rotational and orbital atherectomy in severely calcified coronary lesions. Catheter Cardiovasc Interv. 2015;86:1024–32. doi: 10.1002/ccd.26000.
    1. Okamoto N, Ueda H, Bhatheja S et al. Procedural and one-year outcomes of patients treated with orbital and rotational atherectomy with mechanistic insights from optical coherence tomography. EuroIntervention. 2019;14:1760–7. doi: 10.4244/EIJ-D-17-01060.
    1. Wasiak J, Law J, Watson P, Spinks A. Percutaneous transluminal rotational atherectomy for coronary artery disease. Cochrane Database Syst Rev. 2012;12:CD003334. doi: 10.1002/14651858.CD003334.pub2.
    1. Abdel-Wahab M, Richardt G, Joachim Büttner H et al. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior To Taxus Stent Treatment For Complex Native Coronary Artery Disease) trial. JACC Cardiovasc Interv. 2013;6:10–9. doi: 10.1016/j.jcin.2012.07.017.
    1. Amemiya K, Yamamoto MH, Maehara A Effect of cutting balloon after rotational atherectomy in severely calcified coronary artery lesions as assessed by optical coherence tomography. Catheter Cardiovasc Interv. 2019.
    1. Shavadia JS, Vo MN, Bainey KR. Challenges with severe coronary artery calcification in percutaneous coronary intervention: a narrative review of therapeutic options. Can J Cardiol. 2018;34:1564–72. doi: 10.1016/j.cjca.2018.07.482.
    1. Barbato E, Carrié D, Dardas P et al. European expert consensus on rotational atherectomy. EuroIntervention. 2015;11:30–6. doi: 10.4244/EIJV11I1A6.
    1. Cockburn J, Hildick-Smith D, Cotton J et al. Contemporary clinical outcomes of patients treated with or without rotational coronary atherectomy – an analysis of the UK central cardiac audit database. Int J Cardiol. 2014;170:381–7. doi: 10.1016/j.ijcard.2013.11.018.
    1. Iannaccone M, Piazza F, Boccuzzi GG et al. ROTational AThErectomy in acute coronary syndrome: early and midterm outcomes from a multicentre registry. EuroIntervention. 2016;12:1457–64. doi: 10.4244/EIJ-D-15-00485.
    1. Shlofmitz E, Martinsen BJ, Lee M et al. Orbital atherectomy for the treatment of severely calcified coronary lesions: evidence, technique, and best practices. Expert Rev Med Devices. 2017;14:867–79. doi: 10.1080/17434440.2017.1384695.
    1. Lee MS, Gordin JS, Stone GW et al. Orbital and rotational atherectomy during percutaneous coronary intervention for coronary artery calcification. Catheter Cardiovasc Interv. 2018;92:61–7. doi: 10.1002/ccd.27339.
    1. Dangas DG, Di Mario C, Kipshidze NN . Chichester, UK: Wiley Blackwell: 2017. Interventional Cardiologist Principles and Practice. 2nd ed.
    1. Shlofmitz E, Shlofmitz R, Lee MS. Orbital atherectomy: a comprehensive review. Interv Cardiol Clin. 2019;8:161–71. doi: 10.1016/j.iccl.2018.11.006.
    1. Sotomi Y, Cavalcante R, Shlofmitz RA et al. Quantification by optical coherence tomography imaging of the ablation volume obtained with the Orbital Atherectomy System in calcified coronary lesions. EuroIntervention. 2016;12:1126–34. doi: 10.4244/EIJV12I9A184.
    1. Parikh K, Chandra P, Choksi N et al. Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: the ORBIT I trial. Catheter Cardiovasc Interv. 2013;81:1134–9. doi: 10.1002/ccd.24700.
    1. Chambers JW, Feldman RL, Himmelstein SI et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II) JACC Cardiovasc Interv. 2014;7:510–8. doi: 10.1016/j.jcin.2014.01.158.
    1. Lee MS, Shlofmitz E, Goldberg A, Shlofmitz R. Multicenter registry of real-world patients with severely calcified coronary lesions undergoing orbital atherectomy: 1-year outcomes. J Invasive Cardiol. 2018;30:121–4. doi: 10.1111/joic.12362.
    1. Coronary Orbital Atherectomy System Study (COAST). 2014. Available at: (accessed 16 October 2019)
    1. Evaluation of Treatment Strategies for Severe CaLcIfic Coronary Arteries: Orbital Atherectomy vs. Conventional Angioplasty Technique Prior to Implantation of Drug-Eluting StEnts: The ECLIPSE Trial (ECLIPSE). 2017. Available at: (accessed 16 October 2019)
    1. Feasibility of Orbital Atherectomy System in Calcified Bifurcation Lesion (ORBID-OA). 2017. Available at: (accessed 16 October 2019)
    1. Khalid N, Javed H, Rogers T Adverse events related to orbital atherectomy: lessons learned from an analytic review of the MAUDE database. EuroIntervention. 2019. epub ahead of press.
    1. Badr S, Ben-Dor I, Dvir D et al. The state of the excimer laser for coronary intervention in the drug-eluting stent era. Cardiovasc Revasc Med. 2013;14:93–8. doi: 10.1016/j.carrev.2012.12.008.
    1. Bilodeau L, Fretz EB, Taeymans Y et al. Novel use of a high-energy excimer laser catheter for calcified and complex coronary artery lesions. Catheter Cardiovasc Interv. 2004;62:155–61. doi: 10.1002/ccd.20053.
    1. Holmes DR Jr, Mehta S, George CJ et al. Excimer laser coronary angioplasty: the New Approaches to Coronary Intervention (NACI) experience. Am J Cardiol. 1997;80:99K–105K. doi: 10.1016/S0002-9149(97)00769-8.
    1. Fernandez JP, Hobson AR, McKenzie D et al. Beyond the balloon: excimer coronary laser atherectomy used alone or in combination with rotational atherectomy in the treatment of chronic total occlusions, non-crossable and non-expansible coronary lesions. EuroIntervention. 2013;9:243–50. doi: 10.4244/EIJV9I2A40.
    1. Lee T, Shlofmitz RA, Song L et al. The effectiveness of excimer laser angioplasty to treat coronary in-stent restenosis with peri-stent calcium as assessed by optical coherence tomography. EuroIntervention. 2019;15:e279–88. doi: 10.4244/EIJ-D-18-00139.
    1. Dini CS, Tomberli B, Mattesini A Intravascular lithotripsy for calcific coronary and peripheral artery stenoses. EuroIntervention. 2019. epub ahead of press.
    1. Ali ZA, Brinton TJ, Hill JM et al. Optical coherence tomography characterization of coronary lithoplasty for treatment of calcified lesions: first description. JACC Cardiovasc Imaging. 2017;10:897–906. doi: 10.1016/j.jcmg.2017.05.012.
    1. Brinton TJ, Ali Z, Hill J et al. Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses: first description. Circulation. 2019;139:834–6. doi: 10.1161/CIRCULATIONAHA.118.036531.
    1. Shockwave Coronary Lithoplasty® Study (Disrupt CAD II). 2017. Available at: (accessed 16 October 2019)
    1. Wong B, El-Jack S, Khan A et al. Treatment of heavily calcified unprotected left main disease with lithotripsy: the first case series. J Invasive Cardiol. 2019;31:E143–7.
    1. Wong B, El-Jack S, Newcombe R et al. Shockwave intravascular lithotripsy for calcified coronary lesions: first real-world experience. J Invasive Cardiol. 2019;31:46–8. doi: 10.1016/j.hlc.2019.05.022.
    1. Wilson SJ, Spratt JC, Hill J Coronary intravascular lithotripsy is associated with a high incidence of ‘shocktopics’ and asynchronous cardiac pacing. EuroIntervention. 2019. epub ahead of press.
    1. De Maria GL, Scarsini R, Banning AP. Management of calcific coronary artery lesions: is it time to change our interventional therapeutic approach? JACC Cardiovasc Interv. 2019;12:1465–78. doi: 10.1016/j.jcin.2019.03.038.
    1. Jurado-Román A, Gonzálvez A, Galeote G et al. RotaTripsy: combination of rotational atherectomy and intravascular lithotripsy for the treatment of severely calcified lesions. JACC Cardiovasc Interv. 2019;12:e127–9. doi: 10.1016/j.jcin.2019.03.036.

Source: PubMed

Подписаться