Novel Ex Vivo Human Osteochondral Explant Model of Knee and Spine Osteoarthritis Enables Assessment of Inflammatory and Drug Treatment Responses

Jeroen Geurts, Doria Jurić, Miriam Müller, Stefan Schären, Cordula Netzer, Jeroen Geurts, Doria Jurić, Miriam Müller, Stefan Schären, Cordula Netzer

Abstract

Osteoarthritis of the knee and spine is highly prevalent in modern society, yet a disease-modifying pharmacological treatment remains an unmet clinical need. A major challenge for drug development includes selection of appropriate preclinical models that accurately reflect clinical phenotypes of human disease. The aim of this study was to establish an ex vivo explant model of human knee and spine osteoarthritis that enables assessment of osteochondral tissue responses to inflammation and drug treatment. Equal-sized osteochondral fragments from knee and facet joints (both n = 6) were subjected to explant culture for 7 days in the presence of a toll-like receptor 4 (TLR4) agonist and an inhibitor of transforming growth factor-beta (TGF-β) receptor type I signaling. Markers of inflammation, interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), but not bone metabolism (pro-collagen-I) were significantly increased by treatment with TLR4 agonist. Targeting of TGF-β signaling resulted in a strong reduction of pro-collagen-I and significantly decreased IL-6 levels. MCP-1 secretion was increased, revealing a regulatory feedback mechanism between TGF-β and MCP-1 in joint tissues. These findings demonstrate proof-of-concept and feasibility of explant culture of human osteochondral specimens as a preclinical disease model, which might aid in definition and validation of disease-modifying drug targets.

Keywords: bone metabolism; experimental model; inflammation; knee; osteoarthritis; osteochondral; spine.

Conflict of interest statement

The authors declare no conflict of interest. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Tissue viability after explant culture of osteochondral specimens from (a) knee and (b) facet joint osteoarthritis. Fresh clinical specimens were cut in equal-sized fragments and cultured in osteogenic culture medium for one week. Samples were either left untreated (control) or challenged with 1 μg/mL lipopolysaccharide (inflammation) in the absence and presence of a drug treatment (10 μM TGF-β receptor type I inhibitor).
Figure 2
Figure 2
Assessment of secreted markers of bone metabolism and inflammation under basal and inflammatory conditions. Osteoarthritic specimens were left untreated in osteogenic culture medium (control) or challenged with LPS. Secreted protein levels of (a) pro-Col-I, (b) IL-6 and (c) MCP-1 were determined by ELISA. * p < 0.05, *** p < 0.001 by ratio paired t-test.
Figure 3
Figure 3
Assessment of secreted markers of bone metabolism and inflammation under inflammatory conditions in the presence and absence of TGF-β receptor type I inhibition. Osteoarthritic specimens were challenged with LPS (1 μg/mL) and treated with 10 μM SB-505124. Secreted protein levels of (a) pro-Col-I, (b) IL-6 and (c) MCP-1 were determined by ELISA. * p < 0.05, ** p < 0.05, *** p < 0.001 by ratio paired t-test.

References

    1. Kraus V.B., Blanco F.J., Englund M., Karsdal M.A., Lohmander L.S. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr. Cartil. 2015;23:1233–1241. doi: 10.1016/j.joca.2015.03.036.
    1. Cho H.J., Morey V., Kang J.Y., Kim K.W., Kim T.K. Prevalence and risk factors of spine, shoulder, hand, hip, and knee osteoarthritis in community-dwelling koreans older than age 65 years. Clin. Orthop. Relat. Res. 2015;473:3307–3314. doi: 10.1007/s11999-015-4450-3.
    1. Suri P., Hunter D.J., Rainville J., Guermazi A., Katz J.N. Presence and extent of severe facet joint osteoarthritis are associated with back pain in older adults. Osteoarthr. Cartil. 2013;21:1199–1206. doi: 10.1016/j.joca.2013.05.013.
    1. Blagojevic M., Jinks C., Jeffery A., Jordan K.P. Risk factors for onset of osteoarthritis of the knee in older adults: A systematic review and meta-analysis. Osteoarthr. Cartil. 2010;18:24–33. doi: 10.1016/j.joca.2009.08.010.
    1. Hugle T., Geurts J. What drives osteoarthritis?—Synovial versus subchondral bone pathology. Rheumatology. 2017;56:1461–1471.
    1. Roemer F.W., Kwoh C.K., Hannon M.J., Hunter D.J., Eckstein F., Fujii T., Boudreau R.M., Guermazi A. What comes first? Multitissue involvement leading to radiographic osteoarthritis: Magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative. Arthritis Rheumatol. 2015;67:2085–2096. doi: 10.1002/art.39176.
    1. Burr D.B., Gallant M.A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 2012;8:665–673. doi: 10.1038/nrrheum.2012.130.
    1. Felson D.T., Niu J., Neogi T., Goggins J., Nevitt M.C., Roemer F., Torner J., Lewis C.E., Guermazi A., Group M.I. Synovitis and the risk of knee osteoarthritis: The most study. Osteoarthr. Cartil. 2016;24:458–464. doi: 10.1016/j.joca.2015.09.013.
    1. De Lange-Brokaar B.J., Bijsterbosch J., Kornaat P.R., Yusuf E., Ioan-Facsinay A., Zuurmond A.M., Kroon H.M., Meulenbelt I., Bloem J.L., Kloppenburg M. Radiographic progression of knee osteoarthritis is associated with MRI abnormalities in both the patellofemoral and tibiofemoral joint. Osteoarthr. Cartil. 2016;24:473–479. doi: 10.1016/j.joca.2015.09.021.
    1. Kim J.S., Ali M.H., Wydra F., Li X., Hamilton J.L., An H.S., Cs-Szabo G., Andrews S., Moric M., Xiao G., et al. Characterization of degenerative human facet joints and facet joint capsular tissues. Osteoarthr. Cartil. 2015;23:2242–2251. doi: 10.1016/j.joca.2015.06.009.
    1. Livshits G., Kalinkovich A. Hierarchical, imbalanced pro-inflammatory cytokine networks govern the pathogenesis of chronic arthropathies. Osteoarthr. Cartil. 2018;26:7–17. doi: 10.1016/j.joca.2017.10.013.
    1. Raghu H., Lepus C.M., Wang Q., Wong H.H., Lingampalli N., Oliviero F., Punzi L., Giori N.J., Goodman S.B., Chu C.R., et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann. Rheum. Dis. 2017;76:914–922. doi: 10.1136/annrheumdis-2016-210426.
    1. Schelbergen R.F., de Munter W., van den Bosch M.H., Lafeber F.P., Sloetjes A., Vogl T., Roth J., van den Berg W.B., van der Kraan P.M., Blom A.B., et al. Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis. Ann. Rheum. Dis. 2016;75:218–225. doi: 10.1136/annrheumdis-2014-205480.
    1. Huang Z.Y., Stabler T., Pei F.X., Kraus V.B. Both systemic and local lipopolysaccharide (LPS) burden are associated with knee oa severity and inflammation. Osteoarthr. Cartil. 2016;24:1769–1775. doi: 10.1016/j.joca.2016.05.008.
    1. Miller R.E., Belmadani A., Ishihara S., Tran P.B., Ren D., Miller R.J., Malfait A.M. Damage-associated molecular patterns generated in osteoarthritis directly excite murine nociceptive neurons through toll-like receptor 4. Arthritis Rheumatol. 2015;67:2933–2943. doi: 10.1002/art.39291.
    1. Van Lent P.L., Blom A.B., Schelbergen R.F., Sloetjes A., Lafeber F.P., Lems W.F., Cats H., Vogl T., Roth J., van den Berg W.B. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 2012;64:1466–1476. doi: 10.1002/art.34315.
    1. Johnson C.I., Argyle D.J., Clements D.N. In vitro models for the study of osteoarthritis. Vet. J. 2016;209:40–49. doi: 10.1016/j.tvjl.2015.07.011.
    1. Thysen S., Luyten F.P., Lories R.J. Targets, models and challenges in osteoarthritis research. Dis. Models Mech. 2015;8:17–30. doi: 10.1242/dmm.016881.
    1. Deshmukh V., Hu H., Barroga C., Bossard C., Kc S., Dellamary L., Stewart J., Chiu K., Ibanez M., Pedraza M., et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthr. Cartil. 2018;26:18–27. doi: 10.1016/j.joca.2017.08.015.
    1. Zhen G., Wen C., Jia X., Li Y., Crane J.L., Mears S.C., Askin F.B., Frassica F.J., Chang W., Yao J., et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 2013;19:704–712. doi: 10.1038/nm.3143.
    1. Miller R.E., Tran P.B., Ishihara S., Larkin J., Malfait A.M. Therapeutic effects of an anti-ADAMTS-5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis. Osteoarthr. Cartil. 2016;24:299–306. doi: 10.1016/j.joca.2015.09.005.
    1. Dell’Isola A., Steultjens M. Classification of patients with knee osteoarthritis in clinical phenotypes: Data from the osteoarthritis initiative. PLoS ONE. 2018;13:e0191045. doi: 10.1371/journal.pone.0191045.
    1. Fang H., Beier F. Mouse models of osteoarthritis: Modelling risk factors and assessing outcomes. Nat. Rev. Rheumatol. 2014;10:413–421. doi: 10.1038/nrrheum.2014.46.
    1. Karsdal M.A., Michaelis M., Ladel C., Siebuhr A.S., Bihlet A.R., Andersen J.R., Guehring H., Christiansen C., Bay-Jensen A.C., Kraus V.B. Disease-modifying treatments for osteoarthritis (DMOADS) of the knee and hip: Lessons learned from failures and opportunities for the future. Osteoarthr. Cartil. 2016;24:2013–2021. doi: 10.1016/j.joca.2016.07.017.
    1. Blaney Davidson E.N., van Caam A.P., Vitters E.L., Bennink M.B., Thijssen E., van den Berg W.B., Koenders M.I., van Lent P.L., van de Loo F.A., van der Kraan P.M. TGF-β is a potent inducer of nerve growth factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain? Osteoarthr. Cartil. 2015;23:478–486. doi: 10.1016/j.joca.2014.12.005.
    1. Blaney Davidson E.N., Remst D.F., Vitters E.L., van Beuningen H.M., Blom A.B., Goumans M.J., van den Berg W.B., van der Kraan P.M. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J. Immunol. 2009;182:7937–7945. doi: 10.4049/jimmunol.0803991.
    1. Osta B., Roux J.P., Lavocat F., Pierre M., Ndongo-Thiam N., Boivin G., Miossec P. Differential effects of IL-17a and TNF-α on osteoblastic differentiation of isolated synoviocytes and on bone explants from arthritis patients. Front. immunol. 2015;6:151. doi: 10.3389/fimmu.2015.00151.
    1. Madsen S.H., Goettrup A.S., Thomsen G., Christensen S.T., Schultz N., Henriksen K., Bay-Jensen A.C., Karsdal M.A. Characterization of an ex vivo femoral head model assessed by markers of bone and cartilage turnover. Cartilage. 2011;2:265–278. doi: 10.1177/1947603510383855.
    1. Geurts J., Patel A., Hirschmann M.T., Pagenstert G.I., Muller-Gerbl M., Valderrabano V., Hugle T. Elevated marrow inflammatory cells and osteoclasts in subchondral osteosclerosis in human knee osteoarthritis. J. Orthop. Res. 2016;34:262–269. doi: 10.1002/jor.23009.
    1. Netzer C., Urech K., Hugle T., Benz R.M., Geurts J., Scharen S. Characterization of subchondral bone histopathology of facet joint osteoarthritis in lumbar spinal stenosis. J. Orthop. Res. 2016;34:1475–1480. doi: 10.1002/jor.23281.
    1. Couchourel D., Aubry I., Delalandre A., Lavigne M., Martel-Pelletier J., Pelletier J.P., Lajeunesse D. Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum. 2009;60:1438–1450. doi: 10.1002/art.24489.
    1. Lee E.Y., Chung C.H., Khoury C.C., Yeo T.K., Pyagay P.E., Wang A., Chen S. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-β, increases podocyte motility and albumin permeability. Am. J. Physiol. Ren. Physiol. 2009;297:F85–F94. doi: 10.1152/ajprenal.90642.2008.
    1. Ma J., Wang Q., Fei T., Han J.D., Chen Y.G. Mcp-1 mediates TGF-β-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood. 2007;109:987–994. doi: 10.1182/blood-2006-07-036400.
    1. Findlay D.M., Kuliwaba J.S. Bone-cartilage crosstalk: A conversation for understanding osteoarthritis. Bone Res. 2016;4:16028. doi: 10.1038/boneres.2016.28.
    1. Wyatt L.A., Moreton B.J., Mapp P.I., Wilson D., Hill R., Ferguson E., Scammell B.E., Walsh D.A. Histopathological subgroups in knee osteoarthritis. Osteoarthr. Cartil. 2017;25:14–22. doi: 10.1016/j.joca.2016.09.021.
    1. Paul J., Barg A., Kretzschmar M., Pagenstert G., Studler U., Hugle T., Wegner N.J., Valderrabano V., Geurts J. Increased osseous 99mTc-DPD uptake in end-stage ankle osteoarthritis: Correlation between spect-ct imaging and histologic findings. Foot Ankle Int. 2015;36:1438–1447. doi: 10.1177/1071100715596745.
    1. Leijten J.C., Bos S.D., Landman E.B., Georgi N., Jahr H., Meulenbelt I., Post J.N., van Blitterswijk C.A., Karperien M. GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Res. Ther. 2013;15:R126. doi: 10.1186/ar4306.
    1. Chang J.C., Christiansen B.A., Murugesh D.K., Sebastian A., Hum N.R., Collette N.M., Hatsell S., Economides A.N., Blanchette C.D., Loots G.G. SOST/sclerostin improves post traumatic osteoarthritis and inhibits MMP2/3 expression after injury. J. Bone Miner. Res. 2018 doi: 10.1002/jbmr.3397.
    1. Muratovic D., Findlay D.M., Cicuttini F.M., Wluka A.E., Lee Y.R., Kuliwaba J.S. Bone matrix microdamage and vascular changes characterize bone marrow lesions in the subchondral bone of knee osteoarthritis. Bone. 2018;108:193–201. doi: 10.1016/j.bone.2018.01.012.

Source: PubMed

Подписаться