Effects of the Dental Caries Preventive Procedure on the White Spot Lesions during Orthodontic Treatment-An Open Label Randomized Controlled Trial

Yudai Shimpo, Yoshiaki Nomura, Toshiko Sekiya, Chihiro Arai, Ayako Okada, Kaoru Sogabe, Nobuhiro Hanada, Hiroshi Tomonari, Yudai Shimpo, Yoshiaki Nomura, Toshiko Sekiya, Chihiro Arai, Ayako Okada, Kaoru Sogabe, Nobuhiro Hanada, Hiroshi Tomonari

Abstract

(1) Background: The aim of this study was to assess the preventive effect of tooth surface disinfection treatment, in addition to fluoride application, during fixed orthodontic treatment. (2) Methods: An open label randomized control trial for the evaluation of the dental caries preventive procedure was performed for the patients with high caries risk who had been visited at Department of Orthodontics, Tsurumi University Dental Hospital for orthodontics treatment. The follow-up period was six months. White spot lesions (WSLs) were evaluated by quantitative light-induced fluorescence (QLF). Cariogenic bacteria were monitored and evaluated by bacterial culture. In addition, the oral microbiome was evaluated by a next-generation sequence (NGS). (3) Results: By the mixed effect modeling, tooth surface disinfection treatment significantly reduced cariogenic bacteria and all parameters obtained by QLF. (4) Conclusions: Tooth surface disinfection treatment, in addition to PMTC and fluoride application, were effective for dental caries prevention and keeping a healthy microbiome during orthodontic treatment.

Keywords: fixed orthodontic treatment; mixed effect model; oral microbiome; quantitative light-induced fluorescence; tooth surface disinfection.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Changes of salivary levels of proportion of mutans streptococci in total streptococci during study periods. p-values were calculated by mixed effect model. Changes of cariogenic bacteria were all statistically significant. The results of mixed effect models were shown in Table S2. Time-points: TS, screening; T0, at the start of study (baseline); T1: after 1 month; T2: after 2 months; T3: after 3 months; T4: after 4 months; T5: after 5 months; T6: after 6 months.
Figure 2
Figure 2
Changes of ΔQ value evaluated by QLF. (A) Heatmap by segmentation of nine areas in each tooth. (B) Histogram of white spot parameters.
Figure 3
Figure 3
Oral microbiome structure before and after treatment. Data are presented separately phylum, and genus level. (A) Tooth surface disinfection group at phylum level. (B) Fluoride application group at phylum level. (C) Tooth surface disinfection group at genius level. (D) Fluoride application group at genus level.
Figure 4
Figure 4
Correlation heatmap of ΔQ value and species. The order of tooth surface in legend is maxillary to mandibular, right to left, distal to mesial. Detailed correlations are shown in the Table S8. Sky blue area indicate positive correlations. Some of the sky-blue area contains site specific species: Aggregatibacter, Alloprevotella, Anaerococcus, Bifidobacterium, Porphyromonas, Prevotella, Treponemma, Vagococcus, Veillonella, and Streptococci. (AE): Cluster of highly positive correlation between WSLs and species.

References

    1. Spyridon N.P., Damian H., Theodore E. Outcomes of comprehensive fixed appliance orthodontic treatment: A systematic review with meta-analysis and methodological overview. Korean J. Orthod. 2017;47:401–413. doi: 10.4041/kjod.2017.47.6.401.
    1. Chang H.S., Walsh L.J., Freer T.J. Enamel demineralization during orthodontic treatment. Aetiology and prevention. Aust. Dent. J. 1997;42:322–327. doi: 10.1111/j.1834-7819.1997.tb00138.x.
    1. Julien K.C., BusChang P.H., CamPBell P.M. Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod. 2013;83:641–647. doi: 10.2319/071712-584.1.
    1. Paolantonio M., D’ercole S., Perinetti G., Tripodi D., Catamo G., Serra E., Bruè C., Piccolomini R. Clinical and microbiological effects of different restorative materials on the periodontal tissues adjacent to subgingival class V restorations. J. Clin. Periodontol. 2004;31:200–207. doi: 10.1111/j.0303-6979.2004.00472.x.
    1. Freitas A.O., Marquezan M., Mda C.N., Alviano D.S., Maia L.C. The influence of orthodontic fixed appliances on the oral microbiota: A systematic review. Dental. Press J. Orthod. 2014;19:46–55. doi: 10.1590/2176-9451.19.2.046-055.oar.
    1. Topaloglu-Ak A., Ertugrul F., Eden E., Ates M., Bulut H. Effect of orthodontic appliances on oral microbiota—6 month followup. J. Clin. Pediatr. Dent. 2011;35:433–436. doi: 10.17796/jcpd.35.4.61114412637mt661.
    1. Ogaard B., Rolla G., Arends J., Cate J.M. Orthodontic appliances and enamel demineralization. Part 2. Prevention and treatment of lesions. Am. J. Orthod. Dentofac. Orthop. 1988;94:123–128. doi: 10.1016/0889-5406(88)90360-5.
    1. Mattousch T.J., van der Veen M.H., Zentner A. Caries lesions after orthodontic treatment followed by quantitative light-induced fluorescence: A 2-year follow-up. Eur. J. Orthod. 2007;29:294–298. doi: 10.1093/ejo/cjm008.
    1. Moriyama C.M., Rodrigues J.A., Lussi A., Diniz M.B. Effectiveness of Fluorescence-Based Methods to Detect in situ Demineralization and Remineralization on Smooth Surfaces. Caries Res. 2014;48:507–514. doi: 10.1159/000363074.
    1. Demito C.F., Rodrigues G.V., Ramos A.L., Bowman S.J. Efficacy of a fluoride varnish in preventing white-spot lesions as measured with laser fluorescence. J. Clin. Orthod. 2011;45:25–29.
    1. Rosenbloom R.G., Tinanoff N. Salivary Streptococcus mutans levels in patients before, during, and after orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 1991;100:35–37. doi: 10.1016/0889-5406(91)70046-Y.
    1. Mummolo S., Nota A., Albani F., Marchetti E., Gatto R., Marzo G., Quinzi V., Tecco S. Salivary levels of Streptococcus mutans and Lactobacilli and other salivary indices in patients wearing clear aligners versus fixed orthodontic appliances: An observational study. PLoS ONE. 2020;15:e0228798. doi: 10.1371/journal.pone.0228798.
    1. Al Mulla A.H., Al Kharsa S., Birkhed D. Modified fluoride toothpaste technique reduces caries in orthodontic patients: A longitudinal, randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2010;138:285–291. doi: 10.1016/j.ajodo.2010.04.016.
    1. Farhadian N., Miresmaeili A., Eslami B., Mehrabi S. Effect of fluoride varnish on enamel demineralization around brackets: An in-vivo study. Am. J. Orthod. Dentofac. Orthop. 2008;133:S95–S98. doi: 10.1016/j.ajodo.2006.09.050.
    1. Rijkom H., Truin G., Van’t Hof M. A meta-analysis of clinical studies on the caries-inhibiting effect of chlorhexidine treatment. J. Dent. Res. 1996;75:790–795. doi: 10.1177/00220345960750020901.
    1. Maruo I.T., Rosa E.A., Maruo H., Tanaka O., Guariza F.O., Ignácio S.A., Camargo E.S. Effect of chlorhexidine mouth rinse on Streptococci counts of tooth tissue borne palatal expander biofilm. Orthod. Craniofac. Res. 2008;11:136–142. doi: 10.1111/j.1601-6343.2007.00418.x.
    1. Reynolds E.C., Cai F., Cochrane N.J., Shen P., Walker G.D., Morgan M.V., Reynolds C. Fluoride and casein phosphopeptide-amorphous calcium phosphate. J. Den. Res. 2008;87:344–348. doi: 10.1177/154405910808700420.
    1. Alves P.V.M., Alviano W.S., Bolognese A.M., Nojima L.I. Treatment protocol to control Streptococcus mutans level in an orthodontic patient with high caries risk. Am. J. Orthod. Dentofac. Orthop. 2008;133:91–94. doi: 10.1016/j.ajodo.2006.03.031.
    1. Al-Bazi S.M., Abbassy M.A., Bakry A.S., Merdad L.A., Hassan A.H. Effects of chlorhexidine (gel) application on bacterial levels and orthodontic brackets during orthodontic treatment. J. Oral Sci. 2016;58:35–42. doi: 10.2334/josnusd.58.35.
    1. Restrepo M., Bussaneli D.G., Jeremias F., Cordeiro R.C.L., Magalhães A.C., Spolidorio D.M.P., Santos P.L. Control of White Spot Lesion Adjacent to Orthodontic Bracket with Use of Fluoride Varnish or Chlorhexidine Gel. Sci. World J. 2015;2015:218452. doi: 10.1155/2015/218452.
    1. Benson P.E., Pender N., Higham S.M. Quantifying enamel demineralization from teeth with orthodontic brackets—a comparison of two methods. Part 1: Repeatability and agreement. Eur. J. Orthod. 2003;25:149–158. doi: 10.1093/ejo/25.2.149.
    1. Tamaki Y., Nomura Y., Takeuchi H., Ida H., Arakawa H., Tsurumoto A., Kumagai T., Hanada N. Study of the clinical usefulness of a dental drug system for selective reduction of mutans streptococci using a case series. J. Oral Sci. 2006;48:111–116. doi: 10.2334/josnusd.48.111.
    1. Benic G.Z., Farella M., Morgan X.C., Viswam J., Nicolas D.H., Cannon R.D., Li M. Oral probiotics reduce halitosis in patients wearing orthodontic braces: A randomized, triple-blind, placebo-controlled trial. J. Breath Res. 2019;13:036010. doi: 10.1088/1752-7163/ab1c81.
    1. Koopman J.E., van der Kaaij N.C., Buijs M.J., Elyassi Y., van der Veen M.H., Crielaard W., Ten Cate J.M., Zaura E. The Effect of Fixed Orthodontic Appliances and Fluoride Mouthwash on the Oral Microbiome of Adolescents—A Randomized Controlled Clinical Trial. PLoS ONE. 2015;10:e0137318. doi: 10.1371/journal.pone.0137318.
    1. Chen I., Chung J., Vella R., Weinstock G.M., Zhou Y., Jheon A.H. Alterations in subgingival microbiota during full-fixed appliance orthodontic treatment—A prospective study. Orthod. Craniofac. Res. 2021;19 doi: 10.1111/ocr.12534.
    1. Vidović B., Gušić I., Tamaš I., Mihajlović D., Mitić V., Obradović R., Radovanović M., Brkić S. The effect of the octenidine-based oral antiseptic on the structure of microbial communities and periodontal status in patients with fixed orthodontic treatment. Eur. Rev. Med. Pharmacol. Sci. 2019;23:8598–8605. doi: 10.26355/eurrev_201910_19176.
    1. Kado I., Hisatsune J., Tsuruda K., Tanimoto K., Sugai M. The impact of fixed orthodontic appliances on oral microbiome dynamics in Japanese patients. Sci. Rep. 2020;10:21989. doi: 10.1038/s41598-020-78971-2.
    1. Rechmann P., Kinsel R., Featherstone J.D.B. Integrating Caries Management by Risk Assessment (CAMBRA) and Prevention Strategies into the Contemporary Dental Practice. Compend. Contin. Educ. Dent. 2018;39:226–233.
    1. Nomura Y., Takeuchi H., Kaneko N., Matin K., Iguchi R., Toyoshima Y., Kono Y., Ikemi T., Imai S., Nishizawa T., et al. Feasibility of eradication of mutans streptococci from oral cavities. J. Oral Sci. 2004;46:179–183. doi: 10.2334/josnusd.46.179.
    1. Nomura Y., Senpuku H., Tsuge S., Hayashi M., Sasaki A., Tamura H., Ida H., Yoshikawa E., Nishikawara F., Kawamura S., et al. Controlling opportunistic pathogens in the oral cavity of preschool children by the use of 3DS. Jpn. J. Infect. Dis. 2001;54:199–200.
    1. Takeuchi H., Fukushima K., Senpuku H., Nomura Y., Kaneko N., Yano A., Morita E., Imai S., Nisizawa T., Kono Y., et al. Clinical study of mutans streptococci using 3DS and monoclonal antibodies. Jpn. J. Infect. Dis. 2001;54:34–36.
    1. Ramos-Gomez F.J., Crystal Y.O., Domejean S., Featherstone J.D. Minimal intervention dentistry: Part 3. Paediatric dental care--prevention and management protocols using caries risk assessment for infants and young children. Br. Dent. J. 2012;213:501–508. doi: 10.1038/sj.bdj.2012.1040.
    1. Enneking F.K., Radhakrishnan N.S., Berg K., Patel S., Wishin J.M., Vasilopoulos T. Patient-centered anesthesia triage system predicts ASA physical status. Anesth. Analg. 2017;124:1957–1962. doi: 10.1213/ANE.0000000000001712.
    1. Aykan O.A., Taner O., Mustafa M.F., Ahmet Y. A comparative assessment of orthodontic treatment outcomes using the quantitative light-induced fluorescence (QLF) method between direct bonding and indirect bonding techniques in adolescents: A single-centre, single-blind randomized controlled trial. Eur. J. Orthod. 2020;42:441–453. doi: 10.1093/ejo/cjz058.
    1. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., Yi H., et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012;62:716–721. doi: 10.1099/ijs.0.038075-0.
    1. Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755.
    1. Nomura Y., Morozumi T., Nakagawa T., Sugaya T., Kawanami M., Suzuki F., Takahashi K., Abe Y., Sato S., Makino-Oi A., et al. Site-level progression of periodontal disease during a follow-up period. PLoS ONE. 2017;12:e0188670. doi: 10.1371/journal.pone.0188670.
    1. Nomura Y., Otsuka R., Wint W.Y., Okada A., Hasegawa R., Hanada N. Tooth-level analysis of dental caries in primary dentition in Myanmar children. Int. J. Environ. Res. Public Health. 2020;17:7613. doi: 10.3390/ijerph17207613.
    1. Nomura Y., Otsuka R., Hasegawa R., Hanada N. Oral Microbiome of Children Living in an Isolated Area in Myanmar. Int. J. Environ. Res. Public Health. 2020;17:4033. doi: 10.3390/ijerph17114033.
    1. Nomura Y., Kakuta E., Okada A., Otsuka R., Shimada M., Tomizawa Y., Taguchi C., Arikawa K., Daikoku H., Sato T., et al. Oral microbiome in four female centenarians. Appl. Sci. 2020;10:5312. doi: 10.3390/app10155312.
    1. Emel S., Ilhan B. Microbiological Evaluation of 0.2% Chlorhexidine Gluconate Mouth Rinse in Orthodontic Patients. Angle Orthod. 2007;77:881–884. doi: 10.2319/080506-320.1.
    1. Oltramari-Navarro P.V.P., Titarelli J.M., Marsicano J., Henriques J.F.C., Janson G., Lauris J., Buzalaf M.A.R. Effectiveness of 0.50% and 0.75% chlorhexidine dentifrices in orthodontic patients: A double-blind and randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2009;136:651–656. doi: 10.1016/j.ajodo.2008.01.017.
    1. James P., Worthington H.V., Parnell C., Harding M., Lamont T., Cheung A., Whelton H., Riley P. Chlorhexidine mouthrinse as an adjunctive treatment for gingival health. Cochrane Database Syst. Rev. 2017;3:CD008676. doi: 10.1002/14651858.CD008676.pub2.
    1. Pitts N., Ekstrand K., The ICDAS Foundation International Caries Detection and Assessment System (ICDAS) and its International Caries Classification and Management System (ICCMS)—Methods for staging of the caries process and enabling dentists to manage caries. Community Dent. Oral Epidemiol. 2013;41:e41–e52. doi: 10.1111/cdoe.12025.
    1. Inada E., Saitoh I., Yu Y., Tomiyama D., Murakami D., Takemoto Y., Morizono K., Iwasaki T., Iwase Y., Yamasaki Y. Quantitative evaluation of toothbrush and arm-joint motion during tooth brushing. Clin. Oral Investig. 2015;19:1451–1462. doi: 10.1007/s00784-014-1367-2.
    1. Spiguel M.H., Tovo M.F., Kramer P.F., Franco K.S., Alves K.M., Delbem A.C. Evaluation of laser fluorescence in the monitoring of the initial stage of the de-/remineralization process: An in vitro and in situ study. Caries Res. 2009;43:302–307. doi: 10.1159/000218094.
    1. Cochrane N.J., Walker G.D., Manton D.J., Reynolds E.C. Comparison of quantitative light-induced fluorescence, digital photography and transverse microradiography for quantification of enamel remineralization. Aust. Dent. J. 2012;57:271–276. doi: 10.1111/j.1834-7819.2012.01706.x.
    1. Hall A.F., DeSchepper E., Ando M., Stookey G.K. In vitro studies of laser fluorescence for detection and quantification of mineral loss from dental caries. Adv. Dent. Res. 1997;11:507–514. doi: 10.1177/08959374970110041901.
    1. Aljehani A., Tranæus S., Forsberg C.-M., Angmar-Mansson B., Shi X.-O. In vitro quantification of white spot enamel lesions adjacent to fixed orthodontic appliances using quantitative light-induced fluorescence and DIAGNOdent. Acta Odontol. Scand. 2004;62:313–318. doi: 10.1080/00016350410001793.
    1. Boersma J., Van der Veen M., Lagerweij M., Bokhout B., PrahlAndersen B. Caries prevalence measured with QLF after treatment with fixed orthodontic appliances: Influencing factors. Caries Res. 2005;39:41–47. doi: 10.1159/000081655.
    1. Van Der Veen M.H., Attin R., Schwestka-Polly R., Wiechmann D. Caries outcomes after orthodontic treatment with fixed appliances: Do lingual brackets make a difference? J. Eur. J. Oral Sci. 2010;118:298–303. doi: 10.1111/j.1600-0722.2010.00733.x.
    1. Tranaeus S., Al-Khateeb S., Björkman S., Twetman S., Angmar-Mansson B. Application of quantitative lightinduced fluorescence to monitor incipient lesions in cariesactive children. A comparative study of remineralisation by fluoride varnish and professional cleaning. Eur. J. Oral Sci. 2001;109:71–75. doi: 10.1034/j.1600-0722.2001.00997.x.
    1. Silva V.M., Massaro C., Buzalaf M.A.R., Janson G., Garib D. Prevention of non-cavitated lesions with fluoride and xylitol varnishes during orthodontic treatment: A randomized clinical trial. Clin. Oral Investig. 2021;25:3421–3430. doi: 10.1007/s00784-021-03930-8.
    1. Kronenberg O., Lussi A., Ruf S. Preventive Effect of Ozone on the Development of White Spot Lesions during Multibracket Appliance Therapy. Angle Orthod. 2009;79:64–69. doi: 10.2319/100107-468.1.
    1. Sonesson M., Brechter A., Lindman R., Abdulraheem S., Twetman S. Fluoride varnish for white spot lesion prevention during orthodontic treatment: Results of a randomized controlled trial 1 year after debonding. Eur. J. Orthod. 2021;43:473–477. doi: 10.1093/ejo/cjaa055.
    1. Beerens M.W., Cate J.M., Buijs M.J., van der Veen M.H. Long-term remineralizing effect of MI Paste Plus on regression of early caries after orthodontic fixed appliance treatment: A 12-month follow-up randomized controlled trial. Eur. J. Orthod. 2018;40:457–464. doi: 10.1093/ejo/cjx085.
    1. Jablonski-Momeni A., Nothelfer R., Morawietz M., Kiesow A., Korbmacher-Steiner H. Impact of self-assembling peptides in remineralization of artificial early enamel lesions adjacent to orthodontic brackets. Sci. Rep. 2020;10:15132. doi: 10.1038/s41598-020-72185-2.
    1. Nomura Y., Fujita Y., Ishihara Y., Kakuta E., Okada A., Maki K., Hanada N. Effects of cariogenic bacteria and sealant evaluated by International Caries Detection Assessment System. Open Dent. J. 2019;13:512–519. doi: 10.2174/1874210601913010512.
    1. Kilian M., Chapple I.L., Hannig M., Marsh P.D., Meuric V., Pedersen A.M.L., Tonetti M.S., Wade W.G., Zaura E. The oral microbiome—An update for oral healthcare professionals. Br. Dent. J. 2016;221:657–666. doi: 10.1038/sj.bdj.2016.865.

Source: PubMed

Подписаться