The Mechanism and Clinical Application of Constraint-Induced Movement Therapy in Stroke Rehabilitation

Dong Wang, Junlu Xiang, Ying He, Min Yuan, Li Dong, Zhenli Ye, Wei Mao, Dong Wang, Junlu Xiang, Ying He, Min Yuan, Li Dong, Zhenli Ye, Wei Mao

Abstract

Constraint-induced movement therapy (CIMT) has been widely applied in stroke rehabilitation, and most relevant studies have shown that CIMT helps improve patients' motor function. In practice, however, principal issues include inconsistent immobilization durations and methods, while incidental issues include a narrow application scope and an emotional impact. Although many studies have explored the possible internal mechanisms of CIMT, a mainstream understanding has not been established.

Keywords: CIMT; clinical application; mechanism; rehabilitation; stroke.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Wang, Xiang, He, Yuan, Dong, Ye and Mao.

References

    1. Abdullahi A. (2018). Effects of number of repetitions and number of hours of shaping practice during constraint-induced movement therapy: a randomized controlled trial. Neurol. Res. Int. 2018:5496408.
    1. Baldwin C. R., Harry A. J., Power L. J., Pope K. L., Harding K. E. (2018). Modified constraint-induced movement therapy is a feasible and potentially useful addition to the community rehabilitation tool kit after stroke: a pilot randomised control trial. Austral. Occupat. Therapy J. 65 503–511. 10.1111/1440-1630.12488
    1. Barghi A., Allendorfer J. B., Taub E., Womble B., Hicks J. M., Uswatte G., et al. (2018). Phase II randomized controlled trial of constraint-induced movement therapy in multiple sclerosis. Part 2: effect on white matter integrity. Neurorehabil. Neural Repair 32 233–241. 10.1177/1545968317753073
    1. Barzel A., Ketels G., Stark A., Tetzlaff B., Daubmann A., Wegscheider K., et al. (2015). Home-based constraint-induced movement therapy for patients with upper limb dysfunction after stroke (HOMECIMT): a cluster-randomised, controlled trial. Lancet Neurol. 14 893–902. 10.1016/S1474-4422(15)00147-7
    1. Brunner I. C., Skouen J. S., Strand L. I. (2012). Is modified constraint-induced movement therapy more effective than bimanual training in improving arm motor function in the subacute phase post stroke? A randomized controlled trial. Clin. Rehabil. 26 1078–1086. 10.1177/0269215512443138
    1. Choi H. S., Shin W. S., Bang D. H., Choi S. J. (2017). Effects of game-based constraint-induced movement therapy on balance in patients with stroke: a single-blind randomized controlled trial. Am. J. Phys. Med. Rehabil. 96 184–190. 10.1097/PHM.0000000000000567
    1. da Silva E. S. M., Santos G. L., Catai A. M., Borstad A., Furtado N. P. D., Aniceto I. A. V., et al. (2019). Effect of aerobic exercise prior to modified constraint-induced movement therapy outcomes in individuals with chronic hemiparesis: a study protocol for a randomized clinical trial. BMC Neurol. 19:196. 10.1186/s12883-019-1421-4
    1. Daniel L., Howard W., Braun D., Page S. J. (2012). Opinions of constraint-induced movement therapy among therapists in southwestern Ohio. Top. Stroke Rehabil. 19 268–275. 10.1310/tsr1903-268
    1. DeBow S. B., McKenna J. E., Kolb B., Colbourne F. (2004). Immediate constraint-induced movement therapy causes local hyperthermia that exacerbates cerebral cortical injury in rats. Canad. J. Physiol. Pharmacol. 82 231–237. 10.1139/y04-013
    1. Emgs E. S., Ribeiro T. S., da Silva T. C. C., Costa M. F. P., Cavalcanti F., Lindquist A. R. R. (2017). Effects of constraint-induced movement therapy for lower limbs on measurements of functional mobility and postural balance in subjects with stroke: a randomized controlled trial. Top. Stroke Rehabil. 24 555–561. 10.1080/10749357.2017.1366011
    1. Gao B. Y., Xu D. S., Liu P. L., Li C., Du L., Hua Y., et al. (2020). Modified constraint-induced movement therapy alters synaptic plasticity of rat contralateral hippocampus following middle cerebral artery occlusion. Neural Regener. Res. 15 1045–1057. 10.4103/1673-5374.270312
    1. Gauthier L. V., Taub E., Perkins C., Ortmann M., Mark V. W., Uswatte G. (2008). Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke. Stroke 39 1520–1525. 10.1161/STROKEAHA.107.502229
    1. Gray C. K., Culham E. (2014). Sit-to-stand in people with stroke: effect of lower limb constraint-induced movement strategies. Stroke Res. Treat. 2014:683681. 10.1155/2014/683681
    1. Hu J., Li C., Hua Y., Liu P., Gao B., Wang Y., et al. (2020). Constraint-induced movement therapy improves functional recovery after ischemic stroke and its impacts on synaptic plasticity in sensorimotor cortex and hippocampus. Brain Res. Bull. 160 8–23. 10.1016/j.brainresbull.2020.04.006
    1. Hu J., Li C., Hua Y., Zhang B., Gao B. Y., Liu P. L., et al. (2019). Constrained-induced movement therapy promotes motor function recovery by enhancing the remodeling of ipsilesional corticospinal tract in rats after stroke. Brain Res. 1708 27–35. 10.1016/j.brainres.2018.11.011
    1. Hu J., Liu P. L., Hua Y., Gao B. Y., Wang Y. Y., Bai Y. L., et al. (2021). Constraint-induced movement therapy enhances AMPA receptor-dependent synaptic plasticity in the ipsilateral hemisphere following ischemic stroke. Neural Regener. Res. 16 319–324. 10.4103/1673-5374.290900
    1. Hu Y. Q., Bai Y. L. (2020). The research progress in mechanisms and clinical applications of constraint-induced movement therapy. Chin. J. Phys. Med. Rehabil. 42 956–960.
    1. Johnson M. L., Taub E., Harper L. H., Wade J. T., Bowman M. H., Bishop-McKay S., et al. (2014). An enhanced protocol for constraint-induced aphasia therapy II: a case series. Am. J. Speech Lang. Pathol. 23 60–72. 10.1044/1058-0360(2013/12-0168)
    1. Joo H. W., Hyun J. K., Kim T. U., Chae S. H., Lee Y. I., Lee S. J. (2012). Influence of constraint-induced movement therapy upon evoked potentials in rats with cerebral infarction. Eur. J. Neurosci. 36 3691–3697. 10.1111/ejn.12014
    1. Ju Y., Yoon I. J. (2018). The effects of modified constraint-induced movement therapy and mirror therapy on upper extremity function and its influence on activities of daily living. J. Phys. Therapy Sci. 30 77–81. 10.1589/jpts.30.77
    1. Kallio K., Nilsson-Wikmar L., Thorsén A. M. (2014). Modified constraint-induced therapy for the lower extremity in elderly persons with chronic stroke: single-subject experimental design study. Top. Stroke Rehabil. 21 111–119. 10.1310/tsr2102-111
    1. Kim D. G., Cho Y. W., Hong J. H., Song J. C., Chung H. A., Bai D. S., et al. (2008). Effect of constraint-induced movement therapy with modified opposition restriction orthosis in chronic hemiparetic patients with stroke. Neurorehabilitation 23 239–244.
    1. Kim H., Yoo E. Y., Jung M. Y., Kim J., Park J. H., Kang D. H. (2018). The effects of mental practice combined with modified constraint-induced therapy on corticospinal excitability, movement quality, function, and activities of daily living in persons with stroke. Disabil. Rehabil. 40 2449–2457. 10.1080/09638288.2017.1337817
    1. Kim J. H., Chang M. Y. (2018). Effects of modified constraint-induced movement therapy on upper extremity function and occupational performance of stroke patients. J. Phys. Therapy Sci. 30 1092–1094. 10.1589/jpts.30.1092
    1. Könönen M., Tarkka I. M., Niskanen E., Pihlajamäki M., Mervaala E., Pitkänen K., et al. (2012). Functional MRI and motor behavioral changes obtained with constraint-induced movement therapy in chronic stroke. Eur. J. Neurol. 19 578–586. 10.1111/j.1468-1331.2011.03572.x
    1. Kwakkel G., Veerbeek J. M., Van Wegen E. E. H., Wolf S. L. (2015). Constraint-induced movement therapy after stroke. Lancet Neurol. 14 224–234.
    1. Li C., Zhang B., Zhu Y., Li Y., Liu P., Gao B., et al. (2017). Post-stroke constraint-induced movement therapy increases functional recovery, angiogenesis, and neurogenesis with enhanced expression of HIF-1α and VEGF. Curr. Neurovasc. Res. 14 368–377. 10.2174/1567202614666171128120558
    1. Li Y. Y., Zhang B., Yu K. W., Li C., Xie H. Y., Bao W. Q., et al. (2018). Effects of constraint-induced movement therapy on brain glucose metabolism in a rat model of cerebral ischemia: a micro PET/CT study. Int. J. Neurosci. 128 736–745. 10.1080/00207454.2017.1418343
    1. Liepert J., Bauder H., Wolfgang H. R., Miltner W. H., Taub E., Weiller C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke 31 1210–1216. 10.1161/01.str.31.6.1210
    1. Lin K. C., Wu C. Y., Liu J. S., Chen Y. T., Hsu C. J. (2009). Constraint-induced therapy versus dose-matched control intervention to improve motor ability, basic/extended daily functions, and quality of life in stroke. Neurorehabil. Neural Repair 23 160–165. 10.1177/1545968308320642
    1. Liu K. P., Balderi K., Leung T. L., Yue A. S., Lam N. C., Cheung J. T., et al. (2016). A randomized controlled trial of self-regulated modified constraint-induced movement therapy in sub-acute stroke patients. Eur. J. Neurol. 23 1351–1360. 10.1111/ene.13037
    1. Liu P., Li C., Zhang B., Zhang Z., Gao B., Liu Y., et al. (2019). Constraint induced movement therapy promotes contralesional-oriented structural and bihemispheric functional neuroplasticity after stroke. Brain Res. Bull. 150 201–206. 10.1016/j.brainresbull.2019.06.003
    1. Livingston-Thomas J. M., McGuire E. P., Doucette T. A., Tasker R. A. (2014). Voluntary forced use of the impaired limb following stroke facilitates functional recovery in the rat. Behav. Brain Res. 261 210–219. 10.1016/j.bbr.2013.12.032
    1. Mark V. W., Taub E., Uswatte G., Bashir K., Cutter G. R., Bryson C. C., et al. (2013). Constraint-induced movement therapy for the lower extremities in multiple sclerosis: case series with 4-year follow-up. Arch. Phys. Med. Rehabil. 94 753–760. 10.1016/j.apmr.2012.09.032
    1. Miltner W., Bauder H., Taub E. J. (2016). Change in movement-related cortical potentials following constraint-induced movement therapy (CIMT) after stroke. Zeitschrift Für Psychol. 224 112–124. 10.1179/016164107X252519
    1. Morris D. M., Taub E., Macrina D. M., Cook E. W., Geiger B. F. (2009). A method for standardizing procedures in rehabilitation: use in the extremity constraint induced therapy evaluation multisite randomized controlled trial. Arch. Phys. Med. Rehabil. 90 663–668. 10.1016/j.apmr.2008.09.576
    1. Morris D. M., Taub E., Mark V. W., Liu W., Brenner L., Pickett T., et al. (2019). Protocol for a randomized controlled trial of CI therapy for rehabilitation of upper extremity motor deficit: the bringing rehabilitation to american veterans everywhere project. J. Head Trauma Rehabil. 34 268–279. 10.1097/HTR.0000000000000460
    1. Nasb M., Li Z., Youssef A. S. A., Dayoub L., Chen H. (2019). Comparison of the effects of modified constraint-induced movement therapy and intensive conventional therapy with a botulinum-a toxin injection on upper limb motor function recovery in patients with stroke. Libyan J. Med. 14:1609304. 10.1080/19932820.2019.1609304
    1. Nesin S. M., Sabitha K. R., Gupta A., Laxmi T. R. (2019). Constraint induced movement therapy as a rehabilitative strategy for ischemic stroke-linking neural plasticity with restoration of skilled movements. J. Stroke Cerebrovasc. Dis. 28 1640–1653. 10.1016/j.jstrokecerebrovasdis.2019.02.028
    1. Nijland R., Kwakkel G., Bakers J., Wegen E. V. (2011). Constraint-induced movement therapy for the upper paretic limb in acute or sub-acute stroke: a systematic review. Int. J. Stroke 6 425–433. 10.1111/j.1747-4949.2011.00646.x
    1. Seok H., Lee S. Y., Kim J., Yeo J., Kang H. (2016). Can short-term constraint-induced movement therapy combined with visual biofeedback training improve hemiplegic upper limb function of subacute stroke patients? Ann. Rehabil. Med. 40 998–1009. 10.5535/arm.2016.40.6.998
    1. Sheng B., Lin M. (2009). A longitudinal study of functional magnetic resonance imaging in upper-limb hemiplegia after stroke treated with constraint-induced movement therapy. Brain Injury 23 65–70. 10.1080/02699050802635299
    1. Sirtori V., Corbetta D., Moja L., Gatti R. J. S. (2009). Constraint-induced movement therapy for upper extremities in patients with stroke. Cochrane Datab. Syst. Rev. 41:CD004433.
    1. Smania N., Gandolfi M., Paolucci S., Iosa M., Ianes P., Recchia S., et al. (2012). Reduced-intensity modified constraint-induced movement therapy versus conventional therapy for upper extremity rehabilitation after stroke: a multicenter trial. Neurorehabil. Neural Repair 26 1035–1045. 10.1177/1545968312446003
    1. Stock R., Thrane G., Anke A., Gjone R., Askim T. (2018). Early versus late-applied constraint-induced movement therapy: a multisite, randomized controlled trial with a 12-month follow-up. Physiother. Res. Int. 23:1689. 10.1002/pri.1689
    1. Stock R., Thrane G., Askim T., Karlsen G., Langørgen E., Erichsen A., et al. (2015). Norwegian constraint-induced therapy multisite trial: adherence to treatment protocol applied early after stroke. J. Rehabil. Med. 47 816–823. 10.2340/16501977-2000
    1. Takebayashi T., Amano S., Hanada K., Umeji A., Takahashi K., Marumoto K., et al. (2015). A one-year follow-up after modified constraint-induced movement therapy for chronic stroke patients with paretic arm: a prospective case series study. Top. Stroke Rehabil. 22 18–25. 10.1179/1074935714Z.0000000028
    1. Taub E., Uswatte G. (2014). Importance for CP rehabilitation of transfer of motor improvement to everyday life. Pediatrics 133 e215–e217. 10.1542/peds.2013-3411
    1. Taub E., Miller N. E., Novack T. A., Cook E. W. I., Crago J. E. (1993). Technique to improve chronic motor deficit after stroke. Arch. Phys. Med. Rehabil. 74 347–354.
    1. Taub E., Uswatte G., Mark V. W. (2014). The functional significance of cortical reorganization and the parallel development of CI therapy. Front. Hum. Neurosci. 8:396. 10.3389/fnhum.2014.00396
    1. Taub E., Uswatte G., King D. K., Morris D., Crago J. E., Chatterjee A. (2006). A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 37 1045–1049. 10.1161/01.STR.0000206463.66461.97
    1. Taub E., Uswatte G., Mark V. W., Morris D. M., Barman J., Bowman M. H., et al. (2013). Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy. Stroke 44 1383–1388. 10.1161/STROKEAHA.111.000559
    1. Thrane G., Askim T., Stock R., Indredavik B., Gjone R., Erichsen A., et al. (2015). Efficacy of constraint-induced movement therapy in early stroke rehabilitation: a randomized controlled multisite trial. Neurorehabil. Neural Repair 29 517–525. 10.1177/1545968314558599
    1. Treger I., Aidinof L., Lehrer H., Kalichman L. (2012a). Constraint-induced movement therapy alters cerebral blood flow in subacute post-stroke patients. Am. J. Phys. Med. Rehabil. 91 804–809. 10.1097/PHM.0b013e31825a1563
    1. Treger I., Aidinof L., Lehrer H., Kalichman L. (2012b). Modified constraint-induced movement therapy improved upper limb function in subacute poststroke patients: a small-scale clinical trial. Top. Stroke Rehabil. 19 287–293. 10.1310/tsr1904-287
    1. Wang L. D., Liu J. M., Yang Y., Peng B. (2019). The prevention and treatment of stroke still face huge challenges—brief report on stroke prevention and treatment in China, 2018. Chin. Circul. J. 34 105–119.
    1. Wolf S. L., Winstein C. J., Miller J. P., Taub E., Uswatte G., Morris D., et al. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296 2095–2104. 10.1001/jama.296.17.2095
    1. Wolf S. L., Winstein C. J., Miller J. P., Thompson P. A., Taub E., Uswatte G., et al. (2008). Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol. 7 33–40. 10.1016/S1474-4422(07)70294-6
    1. Wu C. Y., Chen Y. A., Chen H. C., Lin K. C., Yeh I. L. (2012). Pilot trial of distributed constraint-induced therapy with trunk restraint to improve poststroke reach to grasp and trunk kinematics. Neurorehabil. Neural Repair 26 247–255. 10.1177/1545968311415862
    1. Yu C., Wang W., Zhang Y., Wang Y., Hou W., Liu S., et al. (2017). The effects of modified constraint-induced movement therapy in acute subcortical cerebral infarction. Front. Hum. Neurosci. 11:265. 10.3389/fnhum.2017.00265
    1. Zhai Z. Y., Feng J. (2019). Constraint-induced movement therapy enhances angiogenesis and neurogenesis after cerebral ischemia/reperfusion. Neural Regener. Res. 14 1743–1754. 10.4103/1673-5374.257528
    1. Zhang B., He Q., Li Y. Y., Li C., Bai Y. L., Hu Y. S., et al. (2015). Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats. Neural Regenerat. Res. 10 2004–2010. 10.4103/1673-5374.172319
    1. Zhang X. Z., Lyu M., Luo X. F., Yu X., Wang L., et al. (2020). Recommendations of clinical practice guidelines of stroke rehabilitation. Chin. J. Rehabil. Theory Pract. 26 170–180.
    1. Zhao J., Zhang T., Xu J., Wang M., Zhao S. (2012). Functional magnetic resonance imaging evaluation of brain function reorganization in cerebral stroke patients after constraint-induced movement therapy. Neural Regenerat. Res. 7 1158–1163. 10.3969/j.issn.1673-5374.2012.15.006
    1. Zhao S., Zhao M., Xiao T., Jolkkonen J., Zhao C. (2013). Constraint-induced movement therapy overcomes the intrinsic axonal growth-inhibitory signals in stroke rats. Stroke 44 1698–1705. 10.1161/STROKEAHA.111.000361
    1. Zhu Y., Zhou C., Liu Y., Liu J., Jin J., Zhang S., et al. (2016). Effects of modified constraint-induced movement therapy on the lower extremities in patients with stroke: a pilot study. Disabil. Rncluded in this section. 10.3109/09638288.2015.1107775

Source: PubMed

Подписаться