Understanding the tumor microenvironment for effective immunotherapy

Habib Sadeghi Rad, James Monkman, Majid E Warkiani, Rahul Ladwa, Ken O'Byrne, Nima Rezaei, Arutha Kulasinghe, Habib Sadeghi Rad, James Monkman, Majid E Warkiani, Rahul Ladwa, Ken O'Byrne, Nima Rezaei, Arutha Kulasinghe

Abstract

Advances in immunotherapy have led to durable and long-term benefits in a subset of patients across a number of solid tumor types. Understanding of the subsets of patients that respond to immune checkpoint inhibitors at the cellular level, and in the context of their tumor microenvironment (TME) is becoming increasingly important. The TME is composed of a heterogeneous milieu of tumor and immune cells. The immune landscape of the TME can inhibit or promote tumor initiation and progression; thus, a deeper understanding of tumor immunity is necessary to develop immunotherapeutic strategies. Recent developments have focused on characterizing the TME immune contexture (type, density, and function) to discover mechanisms and biomarkers that may predict treatment outcomes. This has, in part, been powered by advancements in spatial characterization technologies. In this review article, we address the role of specific immune cells within the TME at various stages of tumor progression and how the immune contexture determinants affecting tumor growth are used therapeutically.

Keywords: biomarkers; immune checkpoint inhibitors; immune contexture; immunotherapy; tumor microenvironment.

© 2020 The Authors. Medicinal Research Reviews published by Wiley Periodicals LLC.

Figures

Figure 1
Figure 1
Different roles of TME‐driven cell populations in cancer progression. Cell populations within the TME modulate immune‐activating or immunosuppressive conditions to prevent or promote tumor growth. (A) T cell effector function and differentiation signals can be supported by the dendritic cell (DC) through the interleukin‐12 (IL‐12) secretion. (B) Cancer‐associated fibroblast (CAF) plays an immunosuppressive function by inhibiting CD8+ T cell infiltration and function via secreting transforming growth factor‐beta (TGF‐β). (C) Within the TME, tumor‐associated macrophage (TAM) consists primarily of the M2 macrophage, which is tumorigenic. TAM (M2) contributes to angiogenesis through the secretion of vascular endothelial growth factor (VEGF). (D) CD4+ T cell can play immunoactivative or immunosuppressive roles through the differentiation into T helper type 1 cell (Th1) and regulatory T cell (Treg), respectively. Th1 is able to induce CD8+ T cell by releasing cell‐activating cytokines such as interferon‐gamma (IFN‐γ); however, Treg has an immunosuppressive activity through the inhibition of CD8+ T cell function via releasing IL‐10 and TGF‐β. (E) Myeloid‐derived suppressor cell (MDSC) causes suppression of tumor‐specific CD8+ T cell response by increasing the levels of prostaglandin E2 (PGE2) and arginase (ARG). (F) Mast cell can promote tumor progression through angiogenesis development by secreting certain proteases, such as matrix metalloproteinase 2 (MMP‐2) and MMP‐9, and also by releasing VEGF and fibroblast growth factor (bFGF) from the extracellular matrix (ECM). (G) Similar to the mast cell, neutrophil is also capable of developing angiogenesis via secreting VEGF and MMPs. (H) Natural killer (NK) cell can induce innate and adaptive immune responses through the secretion of pro‐inflammatory cytokines, including IFN‐γ, tumor necrosis factor‐alpha (TNF‐α), and granulocyte/monocyte colony‐stimulating factor (GM‐CSF). TME, tumur microenvironment [Color figure can be viewed at wileyonlinelibrary.com]

References

    1. Cook AM, Lesterhuis WJ, Nowak AK, Lake RA. Chemotherapy and immunotherapy: mapping the road ahead. Curr Opin Immunol. 2016;39:23‐29.
    1. Weintraub K. Drug development: releasing the brakes. Nature. 2013;504(7480):S6‐S8.
    1. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450‐461.
    1. Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541‐550.
    1. Pearce OMT, Delaine‐Smith RM, Maniati E, et al. Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov. 2018;8(3):304‐319.
    1. Liu J, Chen Q, Feng L, Liu Z. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today. 2018;21:55‐73.
    1. Kondo A, Yamamoto S, Nakaki R, et al. Extracellular acidic pH activates the sterol regulatory element‐binding protein 2 to promote tumor progression. Cell Rep. 2017;18(9):2228‐2242.
    1. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21:1‐16.
    1. Swinson DEB, Jones JL, Richardson D, et al. Carbonic anhydrase IX expression, a novel surrogate marker of tumor hypoxia, is associated with a poor prognosis in non‐small‐cell lung cancer. J Clin Oncol. 2003;21(3):473‐482.
    1. Barr MP, Gray SG, Gately K, et al. Vascular endothelial growth factor is an autocrine growth factor, signaling through neuropilin‐1 in non‐small cell lung cancer. Mol Cancer. 2015;14(1):1‐16.
    1. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:1‐21.
    1. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613‐619.
    1. Parascandolo A, Laukkanen MO. Carcinogenesis and reactive oxygen species signaling: Interaction of the NADPH oxidase NOX1–5 and superoxide dismutase 1–3 signal transduction pathways. Antioxid Redox Signal. 2019;30(3):443‐486.
    1. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200.
    1. Kim J, Kim J, Bae J‐S. ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp Mol Med. 2016;48(11):e269.
    1. Yang H, Villani RM, Wang H, et al. The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 2018;37(1):266.
    1. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161‐174.
    1. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12):1243‐1253.
    1. Kai F, Drain AP, Weaver VM. The extracellular matrix modulates the metastatic journey. Dev Cell. 2019;49(3):332‐346.
    1. Gajewski TF, Schreiber H, Fu Y‐X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014‐1022.
    1. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69‐74.
    1. Hirsch FR, McElhinny A, Stanforth D, et al. PD‐L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD‐L1 IHC assay comparison project. J Thorac Oncol. 2017;12(2):208‐222.
    1. O'Donnell JS, Teng MW, Smyth MJ. Cancer immunoediting and resistance to T cell‐based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151‐167.
    1. Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD‐L1 checkpoint. Immunity. 2018;48(3):434‐452.
    1. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133‐150.
    1. Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol. 2014;10(1):41‐62.
    1. Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Paper presented at: Seminars in cancer biology; 2015.
    1. Li X, Shao C, Shi Y, Han W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol. 2018;11(1):31.
    1. Ramos‐Casals M, Brahmer JR, Callahan MK, et al. Immune‐related adverse events of checkpoint inhibitors. Nat Rev Dis Primers. 2020;6(1):1‐21.
    1. Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long‐term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889‐1894.
    1. Wolchok JD, Chiarion‐Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345‐1356.
    1. Liebl MC, Hofmann TG. Identification of responders to immune checkpoint therapy: which biomarkers have the highest value? J Eur Acad Dermatol Venereol. 2019;33:52‐56.
    1. Thompson JA. New NCCN guidelines: recognition and management of immunotherapy‐related toxicity. J Natl Compr Canc Netw. 2018;16(5S):594‐596.
    1. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122‐133.
    1. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism‐driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275‐287.
    1. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor‐based immunotherapy. Lancet Oncol. 2016;17(12):e542‐e551.
    1. Reck M, Rodríguez‐Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD‐L1–positive non–small‐cell lung cancer. N Engl J Med. 2016;375(19):1823‐1833.
    1. Carbone DP, Reck M, Paz‐Ares L, et al. First‐line nivolumab in stage IV or recurrent non–small‐cell lung cancer. N Engl J Med. 2017;376(25):2415‐2426.
    1. Hellmann MD, Nathanson T, Rizvi H, et al. Genomic features of response to combination immunotherapy in patients with advanced non‐small‐cell lung cancer. Cancer Cell. 2018;33(5):843‐852.
    1. Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non–small‐cell lung cancer. N Engl J Med. 2015;372(21):2018‐2028.
    1. Gnjatic S, Bronte V, Brunet LR, et al. Identifying baseline immune‐related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer. 2017;5(1):1‐18.
    1. Rizvi H, Sanchez‐Vega F, La K, et al. Molecular determinants of response to anti‐programmed cell death (PD)‐1 and anti‐programmed death‐ligand 1 (PD‐L1) blockade in patients with non‐small‐cell lung cancer profiled with targeted next‐generation sequencing. J Clin Oncol. 2018;36(7):633‐641.
    1. Tazzyman S, Lewis CE, Murdoch C. Neutrophils: key mediators of tumour angiogenesis. Int J Exp Pathol. 2009;90(3):222‐231.
    1. Friedman AD. Transcriptional regulation of granulocyte and monocyte development. Oncogene. 2002;21(21):3377‐3390.
    1. Wculek SK, Malanchi I. Neutrophils support lung colonization of metastasis‐initiating breast cancer cells. Nature. 2015;528(7582):413‐417.
    1. Tecchio C, Cassatella MA . Neutrophil‐derived chemokines on the road to immunity. Paper presented at: Seminars in immunology; 2016.
    1. Watnick RS. The role of the tumor microenvironment in regulating angiogenesis. Cold Spring Harb Perspect Med. 2012;2(12):a006676.
    1. Kim IS, Gao Y, Welte T, et al. Immuno‐subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat Cell Biol. 2019;21(9):1113‐1126.
    1. Dwyer DF, Barrett NA, Austen KF. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol. 2016;17(7):878‐887.
    1. Plum T, Wang X, Rettel M, et al. Human mast cell proteome reveals unique lineage. putative functions, and structural basis for cell ablation. Immunity. 2020;52(2):404‐416.
    1. Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018;282(1):121‐150.
    1. Ribatti D, Tamma R, Crivellato E. The dual role of mast cells in tumor fate. Cancer Lett. 2018;433:252‐258.
    1. Zhao J, Hou Y, Yin C, et al. Upregulation of histamine receptor H1 promotes tumor progression and contributes to poor prognosis in hepatocellular carcinoma. Oncogene. 2020;39(8):1724‐1738.
    1. Lv Y, Zhao Y, Wang X, et al. Increased intratumoral mast cells foster immune suppression and gastric cancer progression through TNF‐α‐PD‐L1 pathway. J Immunother Cancer. 2019;7(1):54.
    1. Danelli L, Frossi B, Gri G, et al. Mast cells boost myeloid‐derived suppressor cell activity and contribute to the development of tumor‐favoring microenvironment. Cancer Immunol Res. 2015;3(1):85‐95.
    1. Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388‐400.
    1. Groth C, Hu X, Weber R, et al. Immunosuppression mediated by myeloid‐derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120(1):16‐25.
    1. Law AM, Valdes‐Mora F, Gallego‐Ortega D. Myeloid‐derived suppressor cells as a therapeutic target for cancer. Cells. 2020;9(3):561.
    1. Gallego‐Ortega D, Ledger A, Roden DL, et al. ELF5 drives lung metastasis in luminal breast cancer through recruitment of Gr1+ CD11b+ myeloid‐derived suppressor cells. PLOS Biol. 2015;13(12):e1002330.
    1. Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid‐derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.
    1. Kirshenbaum AS, Goff JP, Semere T, Foster B, Scott LM, Metcalfe DD. Demonstration that human mast cells arise from a progenitor cell population that is CD34+, c‐kit+, and expresses aminopeptidase N (CD13). Blood. 1999;94(7):2333‐2342.
    1. Kalinski P, Talmadge JE. Tumor immuno‐environment in cancer progression and therapy. In: Kalinski P, ed. Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology. Springer; 2017:1‐18.
    1. So JY, Skrypek N, Yang HH, et al. Induction of DNMT3B by PGE2 and IL6 at distant metastatic sites promotes epigenetic modification and breast cancer colonization. Cancer Res. 2020;80:2612‐2627.
    1. Czystowska‐Kuzmicz M, Sosnowska A, Nowis D, et al. Small extracellular vesicles containing arginase‐1 suppress T‐cell responses and promote tumor growth in ovarian carcinoma. Nat Commun. 2019;10(1):1‐16.
    1. Bishnupuri KS, Alvarado DM, Khouri AN, et al. IDO1 and kynurenine pathway metabolites activate PI3K‐Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 2019;79(6):1138‐1150.
    1. Fultang L, Panetti S, Ng M, et al. MDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers. EBioMedicine. 2019;47:235‐246.
    1. Fiore VF, Strane PW, Bryksin AV, White ES, Hagood JS, Barker TH. Conformational coupling of integrin and Thy‐1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol. 2015;211(1):173‐190.
    1. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392‐401.
    1. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582‐598.
    1. Chen X, Song E. Turning foes to friends: targeting cancer‐associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99‐115.
    1. Chen W, ten Dijke P. Immunoregulation by members of the TGFβ superfamily. Nat Rev Immunol. 2016;16(12):723‐740.
    1. Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD‐L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544‐548.
    1. Tauriello DVF, Palomo‐Ponce S, Stork D, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554(7693):538‐543.
    1. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López‐Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018;10:eaat7807.
    1. Lakins MA, Ghorani E, Munir H, Martins CP, Shields JDJ. Cancer‐associated fibroblasts induce antigen‐specific deletion of CD8+ T cells to protect tumour cells. Nat Commun. 2018;9(1):1‐9.
    1. Yajima T, Hoshino K, Muranushi R, et al. Fas/FasL signaling is critical for the survival of exhausted antigen‐specific CD8+ T cells during tumor immune response. Mol Immunol. 2019;107:97‐105.
    1. Chiossone L, Dumas P‐Y, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671‐688.
    1. Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17(9):1025‐1036.
    1. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018;9:1869.
    1. Böttcher JP, Bonavita E, Chakravarty P, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018;172(5):1022‐1037.
    1. Young A, Ngiow SF, Gao Y, et al. A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 2018;78(4):1003‐1016.
    1. Viel S, Marçais A, Guimaraes FS‐F, et al. TGF‐β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal. 2016;9(415):ra19.
    1. Gao Y, Souza‐Fonseca‐Guimaraes F, Bald T, et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol. 2017;18(9):1004‐1015.
    1. Marçais A, Marotel M, Degouve S, et al. High mTOR activity is a hallmark of reactive natural killer cells and amplifies early signaling through activating receptors. Elife. 2017;6:e26423.
    1. Rautela J, Dagley LF, De Oliveira CC, et al. Therapeutic blockade of activin‐A improves NK cell function and antitumor immunity. Sci Signal. 2019;12(596):eaat7527.
    1. Mulder WJ, Ochando J, Joosten LA, Fayad ZA, Netea MG. Therapeutic targeting of trained immunity. Nat Rev Drug Discov. 2019;18(7):553‐566.
    1. Best SA, Hess JB, Souza‐Fonseca‐Guimaraes F, et al. Harnessing natural killer immunity in metastatic small cell lung cancer. J Thorac Oncol. 2020;15(9):1507‐1521.
    1. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7‐24.
    1. Binnewies M, Mujal AM, Pollack JL, et al. Unleashing type‐2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell. 2019;177(3):556‐571.
    1. Krishnaswamy JK, Gowthaman U, Zhang B, et al. Migratory CD11b+ conventional dendritic cells induce T follicular helper cell‐dependent antibody responses. Sci Immunol. 2017;2(18):eaam9169.
    1. Spranger S, Dai D, Horton B, Gajewski TF. Tumor‐residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell. 2017;31(5):711‐723.
    1. Salmon H, Idoyaga J, Rahman A, et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD‐L1 and BRAF inhibition. Immunity. 2016;44(4):924‐938.
    1. Williford J‐M, Ishihara J, Ishihara A, et al. Recruitment of CD103+ dendritic cells via tumor‐targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5(12):eaay1357.
    1. Spranger S, Bao R, Gajewski TF. Melanoma‐intrinsic β‐catenin signalling prevents anti‐tumour immunity. Nature. 2015;523(7559):231‐235.
    1. Yang L, Zhang Y. Tumor‐associated macrophages: from basic research to clinical application. J Hematol Oncol. 2017;10(1):58.
    1. Pathria P, Louis TL, Varner JA. Targeting tumor‐associated macrophages in cancer. Trends Immunol. 2019;40(4):310‐327.
    1. Singhal S, Stadanlick J, Annunziata MJ, et al. Human tumor‐associated monocytes/macrophages and their regulation of T cell responses in early‐stage lung cancer. Sci Transl Med. 2019;11:479.
    1. Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther. 2020:1‐13.
    1. Borst J, Ahrends T, Bąbała N, Melief CJ, Kastenmüller W. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635‐647.
    1. Van der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human cancer: insights from single‐cell analysis. Nat Rev Cancer. 2020;20(4):218‐232.
    1. Castellino F, Huang AY, Altan‐Bonnet G, Stoll S, Scheinecker C, Germain RN. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell‐dendritic cell interaction. Nature. 2006;440(7086):890‐895.
    1. González‐Martín A, Gómez L, Lustgarten J, Mira E, Mañes S. Maximal T cell‐mediated antitumor responses rely upon CCR5 expression in both CD4(+) and CD8(+) T cells. Cancer Res. 2011;71(16):5455‐5466.
    1. Morein D, Erlichman N, Ben‐Baruch A. Beyond cell motility: the expanding roles of chemokines and their receptors in malignancy. Front Immunol. 2020;11:952.
    1. Ruterbusch M, Pruner KB, Shehata L, Pepper M. In vivo CD4+ T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu Rev Immunol. 2020;38:705‐725.
    1. Ahrends T, Borst J. The opposing roles of CD 4+ T cells in anti‐tumour immunity. Immunology. 2018;154(4):582‐592.
    1. Braumüller H, Wieder T, Brenner E, et al. T‐helper‐1‐cell cytokines drive cancer into senescence. Nature. 2013;494(7437):361‐365.
    1. Hernandez‐Segura A, Nehme J, Demaria MJ. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28(6):436‐453.
    1. Konopacki C, Pritykin Y, Rubtsov Y, Leslie CS, Rudensky AY. Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function. Nat Immunol. 2019;20(2):232‐242.
    1. Cortez JT, Montauti E, Shifrut E, et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature. 2020;582(7812):416‐420.
    1. Wolf D, Sopper S, Pircher A, Gastl G, Wolf AM. Treg (s) in cancer: friends or foe? J Cell Physiol. 2015;230(11):2598‐2605.
    1. Marshall EA, Ng KW, Kung SHY, et al. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol Cancer. 2016;15(1):1‐15.
    1. De Simone M, Arrigoni A, Rossetti G, et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor‐infiltrating T regulatory cells. Immunity. 2016;45(5):1135‐1147.
    1. Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti‐CTLA‐4 and anti‐PD‐1 checkpoint blockade. Cell. 2017;170(6):1120‐1133.
    1. Spolski R, Li P, Leonard WJ. Biology and regulation of IL‐2: from molecular mechanisms to human therapy. Nat Rev Immunol. 2018;18(10):648‐659.
    1. Lazarevic V, Glimcher LH, Lord GM. T‐bet: a bridge between innate and adaptive immunity. Nat Rev Immunol. 2013;13(11):777‐789.
    1. Hashimoto M, Kamphorst AO, Im SJ, et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med. 2018;69:301‐318.
    1. Wherry EJ, Ahmed R. Memory CD8 T‐cell differentiation during viral infection. J Virol. 2004;78(11):5535‐5545.
    1. Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25:171‐192.
    1. Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single‐cell RNA‐seq. Science. 2016;352(6282):189‐196.
    1. Li H, van der Leun AM, Yofe I, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell. 2019;176(4):775‐789.
    1. Sade‐Feldman M, Yizhak K, Bjorgaard SL, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2018;175(4):998‐1013.
    1. Förster R, Davalos‐Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8(5):362‐371.
    1. Wu JQ, Seay M, Schulz VP, et al. Tcf7 is an important regulator of the switch of self‐renewal and differentiation in a multipotential hematopoietic cell line. PLOS Genet. 2012;8(3):e1002565.
    1. Xing S, Li F, Zeng Z, et al. Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity. Nat Immunol. 2016;17(6):695‐703.
    1. Mohammed RN, Wehenkel SC, Galkina EV, et al. ADAM17‐dependent proteolysis of L‐selectin promotes early clonal expansion of cytotoxic T cells. Sci Rep. 2019;9(1):5487.
    1. Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat Rev Immunol. 2015;15(1):45‐56.
    1. Angell HK, Bruni D, Barrett JC, Herbst R, Galon J. The immunoscore: colon cancer and beyond. Clin Cancer Res. 2020;26(2):332‐339.
    1. Galon J. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960‐1964.
    1. Galon J, Fridman W‐H, Pagès F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67(5):1883‐1886.
    1. Mlecnik B, Tosolini M, Kirilovsky A, et al. Histopathologic‐based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011;29(6):610‐618.
    1. Pagès F, Kirilovsky A, Mlecnik B, et al. In situ cytotoxic and memory T cells predict outcome in patients with early‐stage colorectal cancer. J Clin Oncol. 2009;27(35):5944‐5951.
    1. Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the 'Immunoscore' in the classification of malignant tumours. J Pathol. 2014;232(2):199‐209.
    1. Yoon HH, Shi Q, Heying EN, et al. Intertumoral heterogeneity of CD3+ and CD8+ T‐cell densities in the microenvironment of DNA mismatch‐repair‐deficient colon cancers: implications for prognosis. Clin Cancer Res. 2019;25(1):125‐133.
    1. Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res. 2016;22:1865‐1874.
    1. Camus M, Tosolini M, Mlecnik B, et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 2009;69(6):2685‐2693.
    1. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197‐218.
    1. Angell H, Galon J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol. 2013;25(2):261‐267.
    1. Cogdill AP, Andrews MC, Wargo JA. Hallmarks of response to immune checkpoint blockade. Br J Cancer. 2017;117(1):1‐7.
    1. Samstein RM, Lee C‐H, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202‐206.
    1. Yuko T, Taiji K, Kazue Y, et al. Prognostic impact of PD‐L1 expression in correlation with neutrophil‐to‐lymphocyte ratio in squamous cell carcinoma of the lung. Sci Rep. 2020;10(1):1243.
    1. Liu S‐L, Bian L‐J, Liu Z‐X, et al. Development and validation of the immune signature to predict distant metastasis in patients with nasopharyngeal carcinoma. J Immunother Cancer. 2020;8(1):e000205.
    1. Weber J, Gibney G, Kudchadkar R, et al. Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab. Cancer. Immunol Res. 2016;4(4):345‐353.
    1. Wong PF, Wei W, Gupta S, et al. Multiplex quantitative analysis of cancer‐associated fibroblasts and immunotherapy outcome in metastatic melanoma. J Immunother Cancer. 2019;7(1):194.
    1. Zugazagoitia J, Gupta S, Liu Y, et al. Biomarkers associated with beneficial PD‐1 checkpoint blockade in non‐small‐cell lung cancer (NSCLC) identified using high‐plex digital spatial profiling. Clin Cancer Res. 2020;26(16):4360‐4368.
    1. Mayoux M, Roller A, Pulko V, et al. Dendritic cells dictate responses to PD‐L1 blockade cancer immunotherapy. Sci Transl Med. 2020;12(534):eaav7431.
    1. Liu Y, Zugazagoitia J, Ahmed FS, et al. Immune cell PD‐L1 colocalizes with macrophages and is associated with outcome in PD‐1 pathway blockade therapy. Clin Cancer Res. 2020;26(4):970‐977.
    1. O'Callaghan DS, Rexhepaj E, Gately K, et al. Tumour islet Foxp3+ T‐cell infiltration predicts poor outcome in non‐small cell lung cancer. Eur Respir J. 2015;46(6):1762‐1772.
    1. Cha YJ, Park EJ, Baik SH, Lee KY, Kang J. Clinical significance of tumor‐infiltrating lymphocytes and neutrophil‐to‐lymphocyte ratio in patients with stage III colon cancer who underwent surgery followed by FOLFOX chemotherapy. Sci Rep. 2019;9(1):1‐9.
    1. Fumet J‐D, Truntzer C, Yarchoan M, Ghiringhelli F. Tumour mutational burden as a biomarker for immunotherapy: current data and emerging concepts. Eur J Cancer. 2020;131:40‐50.
    1. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti–PD‐1 immunotherapy in melanoma patients. Science. 2018;359(6371):97‐103.
    1. Xiao G, Jin L‐L, Liu C‐Q, et al. EZH2 negatively regulates PD‐L1 expression in hepatocellular carcinoma. J Immunother Cancer. 2019;7(1):1‐15.
    1. Swanton C. Take lessons from cancer evolution to the clinic. Nature. 2020;581(7809):382‐383.
    1. Mandal R, Samstein RM, Lee K‐W, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti–PD‐1 immunotherapy response. Science. 2019;364(6439):485‐491.
    1. Church SE, Galon J. Regulation of CTL infiltration within the tumor microenvironment. In: Kalinski P, ed. Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology. Springer; 2017:33‐49.
    1. Murciano‐Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment‐targeting combinations. Cell Res. 2020;30(6):507‐519.
    1. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer‐associated genes. Nature. 2013;499(7457):214‐218.
    1. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander CJ. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45(10):1127‐1133.
    1. Yizhak K, Aguet F, Kim J, et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. 2019;364(6444):eaaw0726.
    1. Pon JR, Marra MA. Driver and passenger mutations in cancer. Annu Rev Pathol. 2015;10:25‐50.
    1. McFarland CD, Yaglom JA, Wojtkowiak JW, et al. The damaging effect of passenger mutations on cancer progression. Cancer Res. 2017;77(18):4763‐4772.
    1. Cohen CJ, Gartner JJ, Horovitz‐Fried M, et al. Isolation of neoantigen‐specific T cells from tumor and peripheral lymphocytes. J Clin Invest 2015;125(10):3981‐3991.
    1. Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD‐1 blockade in non‐small cell lung cancer. Science. 2015;348(6230):124‐128.
    1. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA‐4 blockade in melanoma. N Engl J Med. 2014;371(23):2189‐2199.
    1. Yu Y. Molecular classification and precision therapy of cancer: immune checkpoint inhibitors. Front Med. 2018;12(2):229‐235.
    1. Chowell D, Morris LGT, Grigg CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018;359(6375):582‐587.
    1. Klempner SJ, Fabrizio D, Bane S, et al. Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence. Oncologist 2020;25(1):e147.
    1. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62‐68.
    1. D'Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR‐T cells: the long and winding road to solid tumors. Cell Death Dis. 2018;9(3):282.
    1. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64‐73.
    1. Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7‐h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37.
    1. Taniguchi K, Karin M. NF‐κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309‐324.
    1. Kumar V, Donthireddy L, Marvel D, et al. Cancer‐associated fibroblasts neutralize the anti‐tumor effect of CSF1 receptor blockade by inducing PMN‐MDSC infiltration of tumors. Cancer Cell. 2017;32(5):654‐668.
    1. Ugel S, De Sanctis F, Mandruzzato S, Bronte VJ. Tumor‐induced myeloid deviation: when myeloid‐derived suppressor cells meet tumor‐associated macrophages. J Clin Invest. 2015;125(9):3365‐3376.
    1. Prat A, Navarro A, Paré L, et al. Immune‐related gene expression profiling after PD‐1 blockade in non‐small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 2017;77(13):3540‐3550.
    1. Ock C‐Y, Keam B, Kim S, et al. Pan‐cancer immunogenomic perspective on the tumor microenvironment based on PD‐L1 and CD8 T‐cell infiltration. Clin Cancer Res. 2016;22(9):2261‐2270.
    1. Pauken KE, Sammons MA, Odorizzi PM, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD‐1 blockade. Science. 2016;354(6316):1160‐1165.
    1. Sen DR, Kaminski J, Barnitz RA, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354(6316):1165‐1169.
    1. Nagy J, Chang S, Dvorak A, Dvorak H. Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer. 2009;100(6):865‐869.
    1. Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. 2017;31(3):311‐325.
    1. Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature. 2017;541(7637):321‐330.
    1. Balachandran VP, Łuksza M, Zhao JN, et al. Identification of unique neoantigen qualities in long‐term survivors of pancreatic cancer. Nature. 2017;551(7681):512‐516.
    1. Smith‐Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591‐619.

Source: PubMed

Подписаться