Fluid-induced harm in the hospital: look beyond volume and start considering sodium. From physiology towards recommendations for daily practice in hospitalized adults

Niels Van Regenmortel, Lynn Moers, Thomas Langer, Ella Roelant, Tim De Weerdt, Pietro Caironi, Manu L N G Malbrain, Paul Elbers, Tim Van den Wyngaert, Philippe G Jorens, Niels Van Regenmortel, Lynn Moers, Thomas Langer, Ella Roelant, Tim De Weerdt, Pietro Caironi, Manu L N G Malbrain, Paul Elbers, Tim Van den Wyngaert, Philippe G Jorens

Abstract

Purpose: Iatrogenic fluid overload is a potential side effect of intravenous fluid therapy in the hospital. Little attention has been paid to sodium administration as a separate cause of harm. With this narrative review, we aim to substantiate the hypothesis that a considerable amount of fluid-induced harm is caused not only by fluid volume, but also by the sodium that is administered to hospitalized patients.

Methods: We show how a regular dietary sodium intake is easily surpassed by the substantial amounts of sodium that are administered during typical hospital stays. The most significant sodium burdens are caused by isotonic maintenance fluid therapy and by fluid creep, defined as the large volume unintentionally administered to patients in the form of dissolved medication. In a section on physiology, we elaborate on the limited renal handling of an acute sodium load. We demonstrate how the subsequent retention of water is an energy-demanding, catabolic process and how free water is needed to excrete large burdens of sodium. We quantify the effect size of sodium-induced fluid retention and discuss its potential clinical impact. Finally, we propose preventive measures, discuss the benefits and risks of low-sodium maintenance fluid therapy, and explore options for reducing the amount of sodium caused by fluid creep.

Conclusion: The sodium burdens caused by isotonic maintenance fluids and fluid creep are responsible for an additional and avoidable derailment of fluid balance, with presumed clinical consequences. Moreover, the handling of sodium overload is characterized by increased catabolism. Easy and effective measures for reducing sodium load and fluid retention include choosing a hypotonic rather than isotonic maintenance fluid strategy (or avoiding these fluids when enough free water is provided through other sources) and dissolving as many medications as possible in glucose 5%.

Conflict of interest statement

Dr Van Regenmortel and Dr Malbrain report speaker’s fees from Baxter Belgium. Dr Van Regenmortel served on an advisory board on fluid therapy organized by Baxter (2017). Dr Van Regenmortel and Dr Malbrain are chairs of the International Fluid Academy, a non-profit organization promoting education on fluid management and hemodynamic monitoring that received sponsoring from the industry (https://urldefense.proofpoint.com/v2/url?u=http-3A__www.fluidacademy.org&d=DwIFAg&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=yAMxyalBUU6FWS_X92e5RF0qgu27J-fAum9UIH64Ji9P7WvInM6e9epg0HCgDPW7&m=QkZx0S146DbbMotw8ZpVlFdowG5dHDiMnpuTRIKNbmw&s=gNrZ_NCIF2Qwfo825mJDWgmsnIgJUrE5iladovTZjwE&e=). The other authors have nothing to disclose.

Figures

Fig. 1
Fig. 1
Cumulative fluid balance of the MIHMoSA and TOPMAST trials. Both in healthy volunteers (MIHMoSA) and in patients undergoing major surgery (TOPMAST), fluid retention was significantly higher in the treatment arm receiving maintenance fluids containing 154 mmol/L of sodium (compared to 54 mmol/L). Compared to healthy subjects, the patient cohort had a more positive fluid balance, no matter the study fluid, partly due to other net fluid input (± 1.5 L) and partly due to the physiological response to hypovolemia, capillary leakage, etc. For details: see text. Adapted from Van Regenmortel et al. and Van Regenmortel et al., with permission [7, 8]
Fig. 2
Fig. 2
Suggested maintenance fluid strategy for in-hospital patients, especially those who are at risk of fluid overload or hyponatremia

References

    1. Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, et al. Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med. 2018;378(9):819–828. doi: 10.1056/NEJMoa1711586.
    1. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378(9):829–839. doi: 10.1056/NEJMoa1711584.
    1. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–134. doi: 10.1056/NEJMoa1204242.
    1. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–1911. doi: 10.1056/NEJMoa1209759.
    1. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–353. doi: 10.1097/01.CCM.0000194725.48928.3A.
    1. Bellamy MC. Wet, dry or something else? Br J Anaesth. 2006;97(6):755–757. doi: 10.1093/bja/ael290.
    1. Van Regenmortel N, Hendrickx S, Roelant E, Baar I, Dams K, Van Vlimmeren K, et al. 154 compared to 54 mmol per liter of sodium in intravenous maintenance fluid therapy for adult patients undergoing major thoracic surgery (TOPMAST): a single-center randomized controlled double-blind trial. Intensive Care Med. 2019;45(10):1422–1432. doi: 10.1007/s00134-019-05772-1.
    1. Van Regenmortel N, De Weerdt T, Van Craenenbroeck AH, Roelant E, Verbrugghe W, Dams K, et al. Effect of isotonic versus hypotonic maintenance fluid therapy on urine output, fluid balance, and electrolyte homeostasis: a crossover study in fasting adult volunteers. Br J Anaesth. 2017;118(6):892–900. doi: 10.1093/bja/aex118.
    1. Van Regenmortel N, Verbrugghe W, Roelant E, Van den Wyngaert T, Jorens PG. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: a retrospective study in a tertiary mixed ICU population. Intensive Care Med. 2018;44(4):409–417. doi: 10.1007/s00134-018-5147-3.
    1. George Institute for Global H. Bihari S, Peake SL, Seppelt I, Williams P, Bersten A, et al. Sodium administration in critically ill patients in Australia and New Zealand: a multicentre point prevalence study. Crit Care Resusc. 2013;15(4):294–300.
    1. Bihari S, Festa M, Peake SL, Seppelt IM, Williams P, Wilkins B, et al. Sodium administration in critically ill paediatric patients in Australia and New Zealand: a multicentre point prevalence study. Crit Care Resusc. 2014;16(2):112–118.
    1. Bihari S, Ou J, Holt AW, Bersten AD. Inadvertent sodium loading in critically ill patients. Crit Care Resusc. 2012;14(1):33–37.
    1. Intersalt Cooperative Research Group Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ. 1988;297(6644):319–328. doi: 10.1136/bmj.297.6644.319.
    1. Brown IJ, Tzoulaki I, Candeias V, Elliott P. Salt intakes around the world: implications for public health. Int J Epidemiol. 2009;38(3):791–813. doi: 10.1093/ije/dyp139.
    1. Bihari S, Peake SL, Prakash S, Saxena M, Campbell V, Bersten A. Sodium balance, not fluid balance, is associated with respiratory dysfunction in mechanically ventilated patients: a prospective, multicentre study. Crit Care Resusc. 2015;17(1):23–28.
    1. (CHMP) EMA-CfHMP. Questions and answers on sodium used as an excipient in medicinal products for human use. 2017.
    1. George J, Majeed W, Mackenzie IS, Macdonald TM, Wei L. Association between cardiovascular events and sodium-containing effervescent, dispersible, and soluble drugs: nested case-control study. BMJ. 2013;347:f6954. doi: 10.1136/bmj.f6954.
    1. Ludwig C. Manuscript notes of lectures, 1869–1870, quoted in a textbook of pharmacology, therapeutics and materia medica. Philadelphia: Lea Brothers and Co.; 1885.
    1. Bonventre JV, Leaf A. Sodium homeostasis: steady states without a set point. Kidney Int. 1982;21(6):880–883. doi: 10.1038/ki.1982.113.
    1. Early L. Clinical disorders of fluid and electrolyte metabolism. New York: McGraw-Hill; 1972.
    1. Bankir L, Perucca J, Norsk P, Bouby N, Damgaard M. Relationship between sodium intake and water intake: the false and the true. Ann Nutr Metab. 2017;70(Suppl 1):51–61. doi: 10.1159/000463831.
    1. Bankir L, Fernandes S, Bardoux P, Bouby N, Bichet DG. Vasopressin-V2 receptor stimulation reduces sodium excretion in healthy humans. J Am Soc Nephrol. 2005;16(7):1920–1928. doi: 10.1681/ASN.2004121079.
    1. Rakova N, Kitada K, Lerchl K, Dahlmann A, Birukov A, Daub S, et al. Increased salt consumption induces body water conservation and decreases fluid intake. J Clin Invest. 2017;127(5):1932–1943. doi: 10.1172/JCI88530.
    1. Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest. 2017;127(5):1944–1959. doi: 10.1172/JCI88532.
    1. Kerstens MN, van der Kleij FG, Boonstra AH, Sluiter WJ, Koerts J, Navis G, et al. Salt loading affects cortisol metabolism in normotensive subjects: relationships with salt sensitivity. J Clin Endocrinol Metab. 2003;88(9):4180–4185. doi: 10.1210/jc.2002-021625.
    1. Choukroun G, Schmitt F, Martinez F, Drueke TB, Bankir L. Low urine flow reduces the capacity to excrete a sodium load in humans. Am J Physiol. 1997;273(5):R1726–R1733.
    1. Rugg C, Strohle M, Treml B, Bachler M, Schmid S, Kreutziger J. ICU-acquired hypernatremia is associated with persistent inflammation, immunosuppression and catabolism syndrome. J Clin Med. 2020;9(9):3017. doi: 10.3390/jcm9093017.
    1. Lindner G, Schwarz C, Funk GC. Osmotic diuresis due to urea as the cause of hypernatraemia in critically ill patients. Nephrol Dial Transplant. 2012;27(3):962–967. doi: 10.1093/ndt/gfr428.
    1. Oude Lansink-Hartgring A, Hessels L, Weigel J, de Smet A, Gommers D, Panday PVN, et al. Long-term changes in dysnatremia incidence in the ICU: a shift from hyponatremia to hypernatremia. Ann Intensive Care. 2016;6(1):22. doi: 10.1186/s13613-016-0124-x.
    1. Kotchen TA, Luke RG, Ott CE, Galla JH, Whitescarver S. Effect of chloride on renin and blood pressure responses to sodium chloride. Ann Intern Med. 1983;98(5 Pt 2):817–822. doi: 10.7326/0003-4819-98-5-817.
    1. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–735. doi: 10.1172/JCI110820.
    1. Reid F, Lobo DN, Williams RN, Rowlands BJ, Allison SP. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci. 2003;104(1):17–24.
    1. Overlack A, Maus B, Ruppert M, Lennarz M, Kolloch R, Stumpe KO. Potassium citrate versus potassium chloride in essential hypertension. Effects on hemodynamic, hormonal and metabolic parameters. Dtsch Med Wochenschr. 1995;120(18):631–635. doi: 10.1055/s-2008-1055388.
    1. Lobo DN, Stanga Z, Simpson JA, Anderson JA, Rowlands BJ, Allison SP. Dilution and redistribution effects of rapid 2-litre infusions of 0.9% (w/v) saline and 5% (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: a double-blind crossover study. Clin Sci. 2001;101(2):173–179. doi: 10.1042/CS20000316.
    1. Tindall SF, Clark RG. The influence of high and low sodium intakes on post-operative antidiuresis. Br J Surg. 1981;68(9):639–644. doi: 10.1002/bjs.1800680911.
    1. Brandstrup B, Tonnesen H, Beier-Holgersen R, Hjortso E, Ording H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–648. doi: 10.1097/01.sla.0000094387.50865.23.
    1. Tambyraja AL, Sengupta F, MacGregor AB, Bartolo DC, Fearon KC. Patterns and clinical outcomes associated with routine intravenous sodium and fluid administration after colorectal resection. World J Surg. 2004;28(10):1046–1051. doi: 10.1007/s00268-004-7383-7.
    1. Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359(9320):1812–1818. doi: 10.1016/S0140-6736(02)08711-1.
    1. Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D, et al. Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med. 2018;378(24):2263–2274. doi: 10.1056/NEJMoa1801601.
    1. Bihari S, Prakash S, Potts S, Matheson E, Bersten AD. Addressing the inadvertent sodium and chloride burden in critically ill patients: a prospective before-and-after study in a tertiary mixed intensive care unit population. Crit Care Resusc. 2018;20(4):285–293.
    1. Van Regenmortel N, Jorens PG, Malbrain ML. Fluid management before, during and after elective surgery. Curr Opin Crit Care. 2014;20(4):390–395. doi: 10.1097/MCC.0000000000000113.
    1. National Institute for Health and Care Excellence Guideline for Intravenous fluid therapy in adults in hospital (CG174), National Institute for Health and Care Excellence Guideline for Intravenous fluid therapy in adults in hospital (CG174), 2013. 2017.
    1. Holliday MA, Ray PE, Friedman AL. Fluid therapy for children: facts, fashions and questions. Arch Dis Child. 2007;92(6):546–550. doi: 10.1136/adc.2006.106377.
    1. Leroy PL, Hoorn EJ. Should we use hypotonic or isotonic maintenance intravenous fluids in sick patients? Why a study in healthy volunteers will not provide the answer: response to: effect of isotonic versus hypotonic maintenance fluid therapy on urine output, fluid balance, and electrolyte homeostasis: a crossover study in fasting adult volunteers. Br J Anaesth. 2017;119(4):836–837. doi: 10.1093/bja/aex312.
    1. Van Regenmortel N, Jorens PG. Effect of isotonic vs hypotonic maintenance fluid therapy on urine output, fluid balance, and electrolyte homeostasis: a crossover study in fasting adult volunteers Reply from the authors. Br J Anaesth. 2017;119(5):1065–1067. doi: 10.1093/bja/aex378.
    1. Lane N, Allen K. Hyponatraemia after orthopaedic surgery. BMJ. 1999;318(7195):1363–1364. doi: 10.1136/bmj.318.7195.1363.
    1. Arieff AI. Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med. 1986;314(24):1529–1535. doi: 10.1056/NEJM198606123142401.
    1. Moritz ML, Ayus JC. Maintenance intravenous fluids in acutely ill patients. N Engl J Med. 2015;373(14):1350–1360. doi: 10.1056/NEJMra1412877.
    1. Ray PE. Neurological complications from dysnatremias in children: a different point of view. Pediatr Nephrol. 2006;21(7):1048–1049. doi: 10.1007/s00467-006-0111-9.
    1. McNab S, Duke T, South M, Babl FE, Lee KJ, Arnup SJ, et al. 140 mmol/L of sodium versus 77 mmol/L of sodium in maintenance intravenous fluid therapy for children in hospital (PIMS): a randomised controlled double-blind trial. Lancet. 2015;385(9974):1190–1197. doi: 10.1016/S0140-6736(14)61459-8.
    1. Dietary reference values for food energy and nutrients for the United Kingdom. Report of the panel on dietary reference values of the Committee on Medical Aspects of Food Policy. Rep Health Soc Subj 1991;41:1–210.
    1. Vanhorebeek I, Gunst J, Ellger B, Boussemaere M, Lerut E, Debaveye Y, et al. Hyperglycemic kidney damage in an animal model of prolonged critical illness. Kidney Int. 2009;76(5):512–520. doi: 10.1038/ki.2009.217.
    1. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–1367. doi: 10.1056/NEJMoa011300.
    1. Choo WP, Groeneveld AB, Driessen RH, Swart EL. Normal saline to dilute parenteral drugs and to keep catheters open is a major and preventable source of hypernatremia acquired in the intensive care unit. J Crit Care. 2014;29(3):390–394. doi: 10.1016/j.jcrc.2014.01.025.
    1. Tsipotis E, Price LL, Jaber BL, Madias NE. Hospital-Associated Hypernatremia Spectrum and Clinical Outcomes in an Unselected Cohort. Am J Med. 2018;131(1):72–82 e1. doi: 10.1016/j.amjmed.2017.08.011.
    1. Polderman KH, Schreuder WO, Strack van Schijndel RJ, Thijs LG. Hypernatremia in the intensive care unit: an indicator of quality of care? Crit Care Med. 1999;27(6):1105–1108. doi: 10.1097/00003246-199906000-00029.
    1. Bihari S, Holt AW, Prakash S, Bersten AD. Addition of indapamide to frusemide increases natriuresis and creatinine clearance, but not diuresis, in fluid overloaded ICU patients. J Crit Care. 2016;33:200–206. doi: 10.1016/j.jcrc.2016.01.017.
    1. Brisco-Bacik MA, Ter Maaten JM, Houser SR, Vedage NA, Rao V, Ahmad T, et al. Outcomes associated with a strategy of adjuvant metolazone or high-dose loop diuretics in acute decompensated heart failure: a propensity analysis. J Am Heart Assoc. 2018;7(18):e009149. doi: 10.1161/JAHA.118.009149.

Source: PubMed

Подписаться