Parathyroid hormone increases alveolar bone homoeostasis during orthodontic tooth movement in rats with periodontitis via crosstalk between STAT3 and β-catenin

Cheng Zhang, Tiancheng Li, Chenchen Zhou, Li Huang, Yuyu Li, Han Wang, Peipei Duan, Shujuan Zou, Li Mei, Cheng Zhang, Tiancheng Li, Chenchen Zhou, Li Huang, Yuyu Li, Han Wang, Peipei Duan, Shujuan Zou, Li Mei

Abstract

Periodontitis patients are at risk of alveolar bone loss during orthodontic treatment. The aim of this study was to investigate whether intermittent parathyroid hormone (1-34) treatment (iPTH) could reduce alveolar bone loss during orthodontic tooth movement (OTM) in individuals with periodontitis and the underlying mechanism. A rat model of OTM in the context of periodontitis was established and alveolar bone loss was observed. The control, iPTH and iPTH + stattic groups received injections of vehicle, PTH and vehicle, or PTH and the signal transducer and activator of transcription 3 (STAT3) inhibitor stattic, respectively. iPTH prevented alveolar bone loss by enhancing osteogenesis and suppressing bone resorption in the alveolar bone during OTM in rats with periodontitis. This effect of iPTH was along with STAT3 activation and reduced by a local injection of stattic. iPTH promoted osteoblastic differentiation and might further regulate the Wnt/β-catenin pathway in a STAT3-dependent manner. The findings of this study suggest that iPTH might reduce alveolar bone loss during OTM in rats with periodontitis through STAT3/β-catenin crosstalk.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Micro-CT showed that OTM + PD caused increased alveolar bone loss. a A flowchart of the in vivo study Part I. b Methods for measuring the CEJ-ABC distance. c ROI for trabecular morphometry analysis. d Buccal images of specimens showing the vertical bone height in the blank, PD and OTM + PD groups and quantitative analysis of the CEJ-ABC distance. e, f BV/TV, Tb. N, Tb. Th, Tb. Sp and BMD in each group at days 7 and 14, respectively. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.000 1 by one-way ANOVA with Tukey’s post hoc test
Fig. 2
Fig. 2
Daily systemic injection of PTH ameliorated alveolar bone loss in the OTM + PD group, which could be reversed by local stattic injection. a A flowchart of the in vivo study Part II. b Buccal images of specimens showing the vertical bone height in the OTM + PD, OTM + PD + PTH and OTM + PD + PTH + S groups, and quantitative analysis of the CEJ-ABC distance. c, d BV/TV, Tb. N, Tb. Th, Tb. Sp and BMD in each group at days 7 and 14, respectively. *P < 0.05, **P < 0.01, ***P < 0.001 by one-way ANOVA with Tukey’s post hoc test
Fig. 3
Fig. 3
Daily systemic injection of PTH activated STAT3 in the alveolar bone, which could be reversed by local stattic injection. Representative images of immunohistochemical staining of STAT3 (a) and p-STAT3 (Tyr705) (b) in the OTM + PD, OTM + PD + PTH and OTM + PD + PTH + S groups, and relative quantitative analysis at days 7 and 14. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.000 1 by one-way ANOVA with Tukey’s post hoc test
Fig. 4
Fig. 4
Daily systemic injection of PTH elevated the ALP levels and reduced the SOST levels in the alveolar bone, which could be reversed by local stattic injection. Representative images of immunohistochemical staining of ALP (a) and SOST (b) in the OTM + PD, OTM + PD + PTH and OTM + PD + PTH + S groups, and relative quantitative analysis at days 7 and 14. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.000 1 by one-way ANOVA with Tukey’s post hoc test
Fig. 5
Fig. 5
Daily systemic injection of PTH decreased osteoclast numbers and RANKL levels, and increased OPG levels, which could be reversed by local stattic injection. Representative images of TRAP staining (a), immunohistochemical staining of RANKL (b) and OPG (c) in the OTM + PD, OTM + PD + PTH and OTM + PD + PTH + S groups, and relative quantitative analysis at days 7 and 14. d Comparison of the RANKL/OPG ratio in each group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.000 1 by one-way ANOVA with Tukey’s post hoc test
Fig. 6
Fig. 6
IPTH promoted osteogenesis in vitro, which could be reduced by stattic. aAlp, Ibsp, Opn, Sp7, Pth1r, Cbfa1, Col1a1 and Bglap expression in each group. b Protein levels of RANKL and OPG. c RANKL and OPG mRNA levels and the RANKL/OPG ratio. d Protein levels of representative osteoblastic markers and p-STAT3 (Tyr705) and STAT3. e Alizarin red S staining and ALP staining. f Quantitative analysis of Alizarin red S staining. g Quantitative analysis of ALP. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.000 1 by one-way ANOVA with Tukey’s post hoc test
Fig. 7
Fig. 7
IPTH activated Wnt/β-catenin signalling, while inhibition of STAT3 activation suppressed this effect. a Colocalization of β-catenin and STAT3 by immunofluorescence. b β-catenin levels in nuclear fractions (active form) and whole cells. cAxin2 expression level. dCtnnb1 expression level. eSost expression level. f A diagram showing the hypothesis that PTH regulates STAT3 and Wnt/β-catenin signalling. *P < 0.05, **P < 0.01 by one-way ANOVA with Tukey’s post hoc test

References

    1. Kassebaum NJ, et al. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J. Dent. Res. 2014;93:1045–1053. doi: 10.1177/0022034514552491.
    1. Zoizner R, Arbel Y, Yavnai N, Becker T, Birnboim-Blau G. Effect of orthodontic treatment and comorbidity risk factors on interdental alveolar crest level: a radiographic evaluation. Am. J. Orthod. Dentofacial Orthop. 2018;154:375–381. doi: 10.1016/j.ajodo.2017.12.012.
    1. Zasčiurinskienė E, Lund H, Lindsten R, Jansson H, Bjerklin K. Outcome of periodontal-orthodontic treatment in subjects with periodontal disease. Part II: a CBCT study of alveolar bone level changes. Eur. J. Orthod. 2019;41:565–574. doi: 10.1093/ejo/cjz039.
    1. Wang Q, et al. Alterations of the oral microbiome in patients treated with the Invisalign system or with fixed appliances. Am. J. Orthod. Dentofacial Orthop. 2019;156:633–640. doi: 10.1016/j.ajodo.2018.11.017.
    1. Gkantidis N, Christou P, Topouzelis N. The orthodontic-periodontic interrelationship in integrated treatment challenges: a systematic review. J. Oral. Rehab. 2010;37:377–390. doi: 10.1111/j.1365-2842.2010.02068.x.
    1. Kirschneck C, et al. Interactive effects of periodontitis and orthodontic tooth movement on dental root resorption, tooth movement velocity and alveolar bone loss in a rat model. Ann. Anat. 2017;210:32–43. doi: 10.1016/j.aanat.2016.10.004.
    1. Shi J, Liu Z, Kawai T, Zhou Y, Han X. Antibiotic administration alleviates the aggravating effect of orthodontic force on ligature-induced experimental periodontitis bone loss in mice. J. Periodontal Res. 2017;52:725–733. doi: 10.1111/jre.12439.
    1. Arweiler NB, Auschill TM, Sculean A. Patient self-care of periodontal pocket infections. Periodontol 2000. 2018;76:164–179. doi: 10.1111/prd.12152.
    1. Knight ET, Liu J, Seymour GJ, Faggion CM, Jr., Cullinan MP. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases. Periodontol 2000. 2016;71:22–51. doi: 10.1111/prd.12110.
    1. Wang C-WJ, McCauley LK. Osteoporosis and Periodontitis. Curr. Osteoporos. Rep. 2016;14:284–291. doi: 10.1007/s11914-016-0330-3.
    1. Hu DY, Hong X, Li X. Oral health in China–trends and challenges. Int. J. Oral. Sci. 2011;3:7–12. doi: 10.4248/IJOS11006.
    1. Marchesan J, et al. An experimental murine model to study periodontitis. Nat. Protoc. 2018;13:2247–2267. doi: 10.1038/s41596-018-0035-4.
    1. Chan HL, McCauley LK. Parathyroid hormone applications in the craniofacial skeleton. J. Dent. Res. 2013;92:18–25. doi: 10.1177/0022034512464779.
    1. Shibamoto A, et al. Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration. Int. J. Oral. Sci. 2018;10:6. doi: 10.1038/s41368-018-0009-y.
    1. Barros SP, Silva MAD, Somerman MJ, Nociti FH., Jr Parathyroid hormone protects against periodontitis-associated bone loss. J. Dent. Res. 2003;82:791–795. doi: 10.1177/154405910308201006.
    1. Kim JH, et al. Intermittent PTH administration improves alveolar bone formation in type 1 diabetic rats with periodontitis. J. Transl. Med. 2018;16:70. doi: 10.1186/s12967-018-1438-2.
    1. Chen H, et al. Intermittent administration of parathyroid hormone ameliorated alveolar bone loss in experimental periodontitis in streptozotocin-induced diabetic rats. Arch. Oral. Biol. 2017;83:76–84. doi: 10.1016/j.archoralbio.2017.06.033.
    1. Otawa M, Tanoue R, Kido H, Sawa Y, Yamashita J. Intermittent administration of parathyroid hormone ameliorates periapical lesions in mice. J. Endod. 2015;41:646–651. doi: 10.1016/j.joen.2014.12.008.
    1. Bashutski JD, et al. Teriparatide and osseous regeneration in the oral cavity. N. Engl. J. Med. 2010;363:2396–2405. doi: 10.1056/NEJMoa1005361.
    1. Bashutski JD, et al. Systemic teriparatide administration promotes osseous regeneration of an intrabony defect: a case report. Clin. Adv. Periodontics. 2012;2:66–71. doi: 10.1902/cap.2012.110043.
    1. Esbrit P, Alcaraz MJ. Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies. Biochem. Pharmacol. 2013;85:1417–1423. doi: 10.1016/j.bcp.2013.03.002.
    1. Cheloha RW, Gellman SH, Vilardaga JP, Gardella TJ. PTH receptor-1 signalling-mechanistic insights and therapeutic prospects. Nat. Rev. Endocrinol. 2015;11:712–724. doi: 10.1038/nrendo.2015.139.
    1. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 2013;19:179–192. doi: 10.1038/nm.3074.
    1. Revollo L, et al. N-cadherin restrains PTH activation of Lrp6/β-catenin signaling and osteoanabolic action. J. Bone Miner. Res. 2015;30:274–285. doi: 10.1002/jbmr.2323.
    1. Lawal RA, et al. The Notch ligand jagged1 regulates the osteoblastic lineage by maintaining the osteoprogenitor pool. J. Bone Miner. Res. 2017;32:1320–1331. doi: 10.1002/jbmr.3106.
    1. Zanotti S, Canalis E. Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone. 2017;103:159–167. doi: 10.1016/j.bone.2017.06.027.
    1. Koh AJ, et al. Cells of the osteoclast lineage as mediators of the anabolic actions of parathyroid hormone in bone. Endocrinology. 2005;146:4584–4596. doi: 10.1210/en.2005-0333.
    1. Demiralp B, Chen HL, Koh AJ, Keller ET, McCauley LK. Anabolic actions of parathyroid hormone during bone growth are dependent on c-fos. Endocrinology. 2002;143:4038–4047. doi: 10.1210/en.2002-220221.
    1. Luiz de Freitas PH, et al. Intermittent PTH administration stimulates pre-osteoblastic proliferation without leading to enhanced bone formation in osteoclast-less c-fos(-/-) mice. J. Bone Miner. Res. 2009;24:1586–1597. doi: 10.1359/jbmr.090413.
    1. Canalis E. Management of endocrine disease: novel anabolic treatments for osteoporosis. Eur. J. Endocrinol. 2018;178:R33–r44. doi: 10.1530/EJE-17-0920.
    1. Fei Y, Hurley MM. Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation. J. Cell Physiol. 2012;227:3539–3545. doi: 10.1002/jcp.24075.
    1. Cho SW, et al. The soluble interleukin-6 receptor is a mediator of hematopoietic and skeletal actions of parathyroid hormone. J. Biol. Chem. 2013;288:6814–6825. doi: 10.1074/jbc.M112.393363.
    1. Sims NA. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int. J. Biochem. Cell Biol. 2016;79:14–23. doi: 10.1016/j.biocel.2016.08.003.
    1. Lee S, et al. Intermittent PTH 1-34 administration improves the marrow microenvironment and endothelium-dependent vasodilation in bone arteries of aged rats. J. Appl Physiol. (1985) 2018;124:1426–1437. doi: 10.1152/japplphysiol.00847.2017.
    1. Blau JE, Collins MT. The PTH-vitamin D-FGF23 axis. Rev. Endocr. Metab. Disord. 2015;16:165–174. doi: 10.1007/s11154-015-9318-z.
    1. Holland SM, et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 2007;357:1608–1619. doi: 10.1056/NEJMoa073687.
    1. Shin H-I, et al. Gp130-mediated signaling is necessary for normal osteoblastic function in vivo and in vitro. Endocrinology. 2004;145:1376–1385. doi: 10.1210/en.2003-0839.
    1. Vallée A, Guillevin R, Vallée J-N. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev. Neurosci. 2018;29:71–91. doi: 10.1515/revneuro-2017-0032.
    1. García de Herreros A, Duñach M. Intracellular signals activated by canonical Wnt ligands independent of GSK3 inhibition and β-catenin stabilization. Cells. 2019;8:1148. doi: 10.3390/cells8101148.
    1. Armanious H, Gelebart P, Mackey J, Ma Y, Lai R. STAT3 upregulates the protein expression and transcriptional activity of β-catenin in breast cancer. Int. J. Clin. Exp. Pathol. 2010;3:654–664.
    1. Mavragani M, Brudvik P, Selvig KA. Orthodontically induced root and alveolar bone resorption: inhibitory effect of systemic doxycycline administration in rats. Eur. J. Orthod. 2005;27:215–225. doi: 10.1093/ejo/cji015.
    1. Boas Nogueira AV, et al. Orthodontic force increases interleukin-1β and tumor necrosis factor-α expression and alveolar bone loss in periodontitis. J. Periodontol. 2013;84:1319–1326. doi: 10.1902/jop.2012.120510.
    1. Kirschneck C, Proff P, Maurer M, Reicheneder C, Römer P. Orthodontic forces add to nicotine-induced loss of periodontal bone: an in vivo and in vitro study. J. Orofac. Orthopedics. 2015;76:195–212. doi: 10.1007/s00056-015-0283-7.
    1. Christensen L, Luther F. Adults seeking orthodontic treatment: expectations, periodontal and TMD issues. Br. Dent. J. 2015;218:111–117. doi: 10.1038/sj.bdj.2015.46.
    1. Ma Z-G, et al. Three-D imaging of dental alveolar bone change after fixed orthodontic treatment in patients with periodontitis. Int. J. Clin. Exp. Med. 2015;8:2385–2391.
    1. Fukata S, et al. Effect of intermittent administration of human parathyroid hormone on bone mineral density and arthritis in rats with collagen-induced arthritis. Arthritis Rheum. 2004;50:4060–4069. doi: 10.1002/art.20728.
    1. Kuroshima S, et al. Intra-oral PTH administration promotes tooth extraction socket healing. J. Dent. Res. 2013;92:553–559. doi: 10.1177/0022034513487558.
    1. Huang J, Cai X. Protective roles of FICZ and aryl hydrocarbon receptor axis on alveolar bone loss and inflammation in experimental periodontitis. J. Clin. Periodontol. 2019;46:882–893. doi: 10.1111/jcpe.13166.
    1. Murray PJ. STAT3-mediated anti-inflammatory signalling. Biochem. Soc. Trans. 2006;34:1028–1031. doi: 10.1042/BST0341028.
    1. Wei W, et al. Activation of the STAT1 pathway accelerates periodontitis in Nos3(-/-) mice. J. Dent. Res. 2019;98:1027–1036. doi: 10.1177/0022034519858063.
    1. Hong, N., Kim, J. E., Lee, S. J., Kim, S. H. & Rhee, Y. Changes in bone mineral density and bone turnover markers during treatment with teriparatide in pregnancy- and lactation-associated osteoporosis. Clin. Endocrinol. 88, 652–658, (2018).
    1. Nicolaidou V, et al. Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS ONE. 2012;7:e39871–e39871. doi: 10.1371/journal.pone.0039871.
    1. Dong M, et al. Osteopontin promotes bone destruction in periapical periodontitis by activating the NF-κB pathway. Cell Physiol. Biochem. 2018;49:884–898. doi: 10.1159/000493219.
    1. Osagie-Clouard L, et al. Parathyroid hormone 1-34 and skeletal anabolic action: the use of parathyroid hormone in bone formation. Bone Jt. Res. 2017;6:14–21. doi: 10.1302/2046-3758.61.BJR-2016-0085.R1.
    1. Walker EC, et al. Sustained RANKL response to parathyroid hormone in oncostatin M receptor-deficient osteoblasts converts anabolic treatment to a catabolic effect in vivo. J. Bone Miner. Res. 2012;27:902–912. doi: 10.1002/jbmr.1506.
    1. Wade-Gueye NM, et al. Mice lacking bone sialoprotein (BSP) lose bone after ovariectomy and display skeletal site-specific response to intermittent PTH treatment. Endocrinology. 2010;151:5103–5113. doi: 10.1210/en.2010-0091.
    1. Wein MN, Kronenberg HM. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb. Perspect. Med. 2018;8:a031237. doi: 10.1101/cshperspect.a031237.
    1. Yang H, et al. N-cadherin restrains PTH repressive effects on sclerostin/SOST by regulating LRP6-PTH1R interaction. Ann. N. Y. Acad. Sci. 2016;1385:41–52. doi: 10.1111/nyas.13221.
    1. Delgado-Calle J, et al. Control of bone anabolism in response to mechanical loading and PTH by distinct mechanisms downstream of the PTH receptor. J. Bone Miner. Res. 2017;32:522–535. doi: 10.1002/jbmr.3011.
    1. Harris, S. E., Rediske, M., Neitzke, R. & Rakian, A. Periodontal biology: stem cells, Bmp2 gene, transcriptional enhancers, and use of sclerostin antibody and Pth for treatment of periodontal disease and bone loss. Cell Stem Cells Regener. Med. 3, 10.16966/2472-6990.113 (2017).
    1. Shall G, et al. Effects of passage number and differentiation protocol on the generation of dopaminergic neurons from rat bone marrow-derived mesenchymal stem cells. Int. J. Mol. Sci. 2018;19:720. doi: 10.3390/ijms19030720.
    1. Xu Y, et al. Intermittent parathyroid hormone promotes cementogenesis in a PKA- and ERK1/2-dependent manner. J. Periodontol. 2019;90:1002–1013. doi: 10.1002/JPER.18-0639.
    1. Li Y, et al. Intermittent parathyroid hormone (PTH) promotes cementogenesis and alleviates the catabolic effects of mechanical strain in cementoblasts. BMC Cell Biol. 2017;18:19. doi: 10.1186/s12860-017-0133-0.

Source: PubMed

Подписаться