PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with BRPC/LAPC: A biomolecular exploratory, phase II trial

Juan Du, Changchang Lu, Liang Mao, Yahui Zhu, Weiwei Kong, Shanshan Shen, Min Tang, Shanhua Bao, Hao Cheng, Gang Li, Jun Chen, Qi Li, Jian He, Aimei Li, Xin Qiu, Qing Gu, Dongsheng Chen, Chuang Qi, Yunjie Song, Xiaoping Qian, Lei Wang, Yudong Qiu, Baorui Liu, Juan Du, Changchang Lu, Liang Mao, Yahui Zhu, Weiwei Kong, Shanshan Shen, Min Tang, Shanhua Bao, Hao Cheng, Gang Li, Jun Chen, Qi Li, Jian He, Aimei Li, Xin Qiu, Qing Gu, Dongsheng Chen, Chuang Qi, Yunjie Song, Xiaoping Qian, Lei Wang, Yudong Qiu, Baorui Liu

Abstract

This is a phase II study of PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with locally advanced or borderline resectable pancreatic cancer (LAPC or BRPC, respectively). Twenty-nine patients are enrolled in the study. The objective response rate (ORR) is 60%, and the R0 resection rate is 90% (9/10). The 12-month progression-free survival (PFS) rate and 12-month overall survival (OS) rate are 64% and 72%, respectively. Grade 3 or higher adverse events are anemia (8%), thrombocytopenia (8%), and jaundice (8%). Circulating tumor DNA analysis reveals that patients with a >50% decline in maximal somatic variant allelic frequency (maxVAF) between the first clinical evaluation and baseline have a longer survival outcome and a higher response rate and surgical rate than those who are not. PD-1 blockade plus chemoradiotherapy as preoperative therapy displays promising antitumor activity, and multiomics potential predictive biomarkers are identified and warrant further verification.

Keywords: PD-1 blockade; borderline resectable pancreatic cancer; circulating tumor DNA; locally advanced pancreatic cancer; preoperative therapy.

Conflict of interest statement

Declaration of interests D.C., Y.S., and C.Q. were employed by Jiangsu Simcere Diagnostics Co., Ltd.

Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Study design (A) Flowchart of the enrolled patients. (B) Timeline of the treatment.
Figure 2
Figure 2
Treatment response and survival analysis (A) Best percentage change from baseline on the basis of radiologic response. (B) Duration of responses of patients in the ITT population. The length of each bar represents the duration of treatment of each patient. (C and D) The Kaplan-Meier curves of (C) PFS and (D) OS in all enrolled patients. (E and F) The Kaplan-Meier curves of (E) PFS and (F) OS stratified by tumor type. (G and H) The Kaplan-Meier curves of (G) PFS and (H) OS stratified by surgical margin. PR, partial response; SD, stable disease; PD, disease progression; EOT, end of treatment; OS, overall survival; PFS, progression-free survival; BRPC, borderline resectable pancreatic cancer; LAPC, locally advanced pancreatic cancer.
Figure 3
Figure 3
Association between peripheral blood biomarkers and treatment response (A and B) The Kaplan-Meier curves of (A) PFS and (B) OS of patients stratified by PBEC (declined vs. elevated). (C and D) The Kaplan-Meier curves of (C) PFS and (D) OS of patients stratified by CA19-9 change between baseline and after four treatment cycles (decline vs. elevated). (E and F) The Kaplan-Meier curves of (E) PFS and (F) OS of patients stratified by CA19-9 decline from baseline, two treatment cycles, and four treatment cycles (continuous decline vs. non-continuous decline). (G) Clinical response of patients stratified by CA19-9 decline from baseline, two treatment cycles, and four treatment cycles (continuous decline vs. non-continuous decline). (H) Surgery margin of the patients stratified by CA19-9 decline from baseline, two treatment cycles, and four treatment cycles (continuous decline vs. non-continuous decline).
Figure 4
Figure 4
ctDNA dynamics and correlation with treatment response (A and B) The Kaplan-Meier curves of (A) PFS and (B) OS of patients stratified by change of ctDNA (T1-T2 mVAF decline vs. non-decline). (C) Treatment response of patients stratified by change of ctDNA (T1-T2 mVAF decline vs. non-decline). (D and E) The Kaplan-Meier curves of (D) PFS and (E) OS of patients stratified by decline of ctDNA (T1-T2 mVAF > 50% vs.  50% vs.  50% vs. 

References

    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA. Cancer J. Clin. 2020;70:7–30. doi: 10.3322/caac.21590.
    1. Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–2921. doi: 10.1158/0008-5472.CAN-14-0155.
    1. Barugola G., Partelli S., Marcucci S., Sartori N., Capelli P., Bassi C., Pederzoli P., Falconi M. Resectable pancreatic cancer: who really benefits from resection? Ann. Surg Oncol. 2009;16:3316–3322. doi: 10.1245/s10434-009-0670-7.
    1. Kimura K., Amano R., Nakata B., Yamazoe S., Hirata K., Murata A., Miura K., Nishio K., Hirakawa T., Ohira M., Hirakawa K. Clinical and pathological features of five-year survivors after pancreatectomy for pancreatic adenocarcinoma. World J. Surg. Oncol. 2014;12:360. doi: 10.1186/1477-7819-12-360.
    1. Conroy T., Hammel P., Hebbar M., Ben Abdelghani M., Wei A.C., Raoul J.L., Choné L., Francois E., Artru P., Biagi J.J., et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N. Engl. J. Med. 2018;379:2395–2406. doi: 10.1056/NEJMoa1809775.
    1. van Roessel S., van Veldhuisen E., Klompmaker S., Janssen Q.P., Abu Hilal M., Alseidi A., Balduzzi A., Balzano G., Bassi C., Berrevoet F., et al. Evaluation of adjuvant chemotherapy in patients with resected pancreatic cancer after neoadjuvant FOLFIRINOX treatment. JAMA Oncol. 2020;6:1733–1740. doi: 10.1001/jamaoncol.2020.3537.
    1. Rosumeck N., Timmermann L., Klein F., Bahra M., Stintzig S., Malinka T., Pelzer U. Induction chemotherapy for primarily unresectable locally advanced pancreatic adenocarcinoma-who will benefit from a secondary resection? Medicina (Kaunas) 2021;57:77. doi: 10.3390/medicina57010077.
    1. Versteijne E., Suker M., Groothuis K., Akkermans-Vogelaar J.M., Besselink M.G., Bonsing B.A., Buijsen J., Busch O.R., Creemers G.J.M., van Dam R.M., et al. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: results of the Dutch randomized phase III PREOPANC trial. J. Clin. Oncol. 2020;38:1763–1773. doi: 10.1200/JCO.19.02274.
    1. Philip P.A., Lacy J., Portales F., Sobrero A., Pazo-Cid R., Manzano Mozo J.L., Kim E.J., Dowden S., Zakari A., Borg C., et al. Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): a multicentre, open-label phase 2 study. Lancet. Gastroenterol. Hepatol. 2020;5:285–294. doi: 10.1016/s2468-1253(19)30327-9.
    1. Inoue Y., Saiura A., Oba A., Ono Y., Mise Y., Ito H., Sasaki T., Ozaka M., Sasahira N., Takahashi Y. Neoadjuvant gemcitabine and nab-paclitaxel for borderline resectable pancreatic cancers: intention-to-treat analysis compared with upfront surgery. J. Hepatobiliary Pancreat. Sci. 2021;28:143–155. doi: 10.1002/jhbp.844.
    1. Damm M., Efremov L., Birnbach B., Terrero G., Kleeff J., Mikolajczyk R., Rosendahl J., Michl P., Krug S. Efficacy and safety of neoadjuvant gemcitabine plus nab-paclitaxel in borderline resectable and locally advanced pancreatic cancer-A systematic review and meta-analysis. Cancers. 2021;13:4326. doi: 10.3390/cancers13174326.
    1. Teriaca M.A., Loi M., Suker M., Eskens F.A.L.M., van Eijck C.H.J., Nuyttens J.J. A phase II study of stereotactic radiotherapy after FOLFIRINOX for locally advanced pancreatic cancer (LAPC-1 trial): long-term outcome. Radiother. Oncol. 2021;155:232–236. doi: 10.1016/j.radonc.2020.11.006.
    1. Cho Y., Kim J.W., Kim H.S., Park J.S., Lee I.J. Intraoperative radiotherapy for resectable pancreatic cancer using a low-energy X-Ray Source: postoperative complications and early outcomes. Yonsei Med. J. 2022;63:405–412. doi: 10.3349/ymj.2022.63.5.405.
    1. Lawlor R.T., Mattiolo P., Mafficini A., Hong S.M., Piredda M.L., Taormina S.V., Malleo G., Marchegiani G., Pea A., Salvia R., et al. Tumor mutational burden as a potential biomarker for immunotherapy in pancreatic cancer: systematic review and still-open questions. Cancers. 2021;13:3119. doi: 10.3390/cancers13133119.
    1. Hewitt D.B., Nissen N., Hatoum H., Musher B., Seng J., Coveler A.L., Al-Rajabi R., Yeo C.J., Leiby B., Banks J., et al. A phase 3 randomized clinical trial of chemotherapy with or without algenpantucel-L (HyperAcute-Pancreas) immunotherapy in subjects with borderline resectable or locally advanced unresectable pancreatic cancer. Ann. Surg. 2022;275:45–53. doi: 10.1097/SLA.0000000000004669.
    1. Wandmacher A.M., Letsch A., Sebens S. Challenges and future perspectives of immunotherapy in pancreatic cancer. Cancers. 2021;13:4235. doi: 10.3390/cancers13164235.
    1. Zhu X., Cao Y., Liu W., Ju X., Zhao X., Jiang L., Ye Y., Jin G., Zhang H. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: an open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2022;23:e105–e115. doi: 10.1016/s1470-2045(22)00066-3.
    1. McCarthy P.M., Rendo M.J., Uy M.D., Adams A.M., O'Shea A.E., Nelson D.W., Fenderson J.L., Cebe K.M., Krell R.W., Clifton G.T., et al. Near complete pathologic response to PD-1 inhibitor and radiotherapy in a patient with locally advanced pancreatic ductal adenocarcinoma. OncoTargets Ther. 2021;14:3537–3544. doi: 10.2147/OTT.S311661.
    1. Chen I.M., Johansen J.S., Theile S., Hjaltelin J.X., Novitski S.I., Brunak S., Hasselby J.P., Willemoe G.L., Lorentzen T., Madsen K., et al. Randomized phase II study of nivolumab with or without ipilimumab combined with stereotactic body radiotherapy for refractory metastatic pancreatic cancer (CheckPAC) J. Clin. Oncol. 2022;40:3180–3189. doi: 10.1200/JCO.21.02511.
    1. Ghebeh H., Elshenawy M.A., AlSayed A.D., Al-Tweigeri T. Peripheral blood eosinophil count is associated with response to chemoimmunotherapy in metastatic triple-negative breast cancer. Immunotherapy. 2022;14:189–199. doi: 10.2217/imt-2021-0149.
    1. Liu J., Li S., Zhang S., Liu Y., Ma L., Zhu J., Xin Y., Wang Y., Yang C., Cheng Y. Systemic immune-inflammation index, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio can predict clinical outcomes in patients with metastatic non-small-cell lung cancer treated with nivolumab. J. Clin. Lab. Anal. 2019;33:e22964. doi: 10.1002/jcla.22964.
    1. Russo A., Russano M., Franchina T., Migliorino M.R., Aprile G., Mansueto G., Berruti A., Falcone A., Aieta M., Gelibter A., et al. Neutrophil-to-Lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and outcomes with nivolumab in pretreated non-small cell lung cancer (NSCLC): a large retrospective multicenter study. Adv. Ther. 2020;37:1145–1155. doi: 10.1007/s12325-020-01229-w.
    1. Luo G., Jin K., Deng S., Cheng H., Fan Z., Gong Y., Qian Y., Huang Q., Ni Q., Liu C., Yu X. Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter. Biochim. Biophys. Acta Rev. Cancer. 2021;1875:188409. doi: 10.1016/j.bbcan.2020.188409.
    1. Rosenberg H.F., Dyer K.D., Foster P.S. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 2013;13:9–22. doi: 10.1038/nri3341.
    1. Ettrich T.J., Uhl W., Kornmann M., Algül H., Friess H., Koenig A., Gallmeier E., Lutz M.P., Wille K., Schimanski C.C., et al. Perioperative or adjuvant nab-paclitaxel plus gemcitabine for resectable pancreatic cancer: updated final results of the randomized phase II AIO-NEONAX trial. J. Clin. Oncol. 2022;40:4133. doi: 10.1200/JCO.2022.40.16_suppl.4133.
    1. Murphy J.E., Wo J.Y., Ryan D.P., Jiang W., Yeap B.Y., Drapek L.C., Blaszkowsky L.S., Kwak E.L., Allen J.N., Clark J.W., et al. Total neoadjuvant therapy with FOLFIRINOX followed by individualized chemoradiotherapy for borderline resectable pancreatic adenocarcinoma: a phase 2 clinical trial. JAMA Oncol. 2018;4:963–969. doi: 10.1001/jamaoncol.2018.0329.
    1. van Dongen J.C., Suker M., Versteijne E., Bonsing B.A., Mieog J.S.D., de Vos-Geelen J., van der Harst E., Patijn G.A., de Hingh I.H., Festen S., et al. Surgical complications in a multicenter randomized trial comparing preoperative chemoradiotherapy and immediate surgery in patients with resectable and borderline resectable pancreatic cancer (PREOPANC trial) Ann. Surg. 2022;275:979–984. doi: 10.1097/SLA.0000000000004313.
    1. Ricciuti B., Jones G., Severgnini M., Alessi J.V., Recondo G., Lawrence M., Forshew T., Lydon C., Nishino M., Cheng M., Awad M. Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC) J. Immunother. Cancer. 2021;9:e001504. doi: 10.1136/jitc-2020-001504.
    1. Yan X., Duan H., Ni Y., Zhou Y., Wang X., Qi H., Gong L., Liu H., Tian F., Lu Q., et al. Tislelizumab combined with chemotherapy as neoadjuvant therapy for surgically resectable esophageal cancer: a prospective, single-arm, phase II study (TD-NICE) Int. J. Surg. 2022;103:106680. doi: 10.1016/j.ijsu.2022.106680.
    1. Yin Y., Lin Y., Yang M., Lv J., Liu J., Wu K., Liu K., Li A., Shuai X., Cai K., et al. Neoadjuvant tislelizumab and tegafur/gimeracil/octeracil (S-1) plus oxaliplatin in patients with locally advanced gastric or gastroesophageal junction cancer: early results of a phase 2, single-arm trial. Front. Oncol. 2022;12:959295. doi: 10.3389/fonc.2022.959295.
    1. Shevtsov M., Sato H., Multhoff G., Shibata A. Novel approaches to improve the efficacy of immuno-radiotherapy. Front. Oncol. 2019;9:156. doi: 10.3389/fonc.2019.00156.
    1. He J., Blair A.B., Groot V.P., Javed A.A., Burkhart R.A., Gemenetzis G., Hruban R.H., Waters K.M., Poling J., Zheng L., et al. Is a pathological complete response following neoadjuvant chemoradiation associated with prolonged survival in patients with pancreatic cancer? Ann. Surg. 2018;268:1–8. doi: 10.1097/SLA.0000000000002672.
    1. Seeber A., Zimmer K., Kocher F., Puccini A., Xiu J., Nabhan C., Elliott A., Goldberg R.M., Grothey A., Shields A.F., et al. Molecular characteristics of BRCA1/2 and PALB2 mutations in pancreatic ductal adenocarcinoma. ESMO Open. 2020;5:e000942. doi: 10.1136/esmoopen-2020-000942.
    1. Karamitopoulou E., Andreou A., Wenning A.S., Gloor B., Perren A. High tumor mutational burden (TMB) identifies a microsatellite stable pancreatic cancer subset with prolonged survival and strong anti-tumor immunity. Eur. J. Cancer. 2022;169:64–73. doi: 10.1016/j.ejca.2022.03.033.
    1. Cheng J.N., Luo W., Sun C., Jin Z., Zeng X., Alexander P.B., Gong Z., Xia X., Ding X., Xu S., et al. Radiation-induced eosinophils improve cytotoxic T lymphocyte recruitment and response to immunotherapy. Sci. Adv. 2021;7:eabc7609. doi: 10.1126/sciadv.abc7609.
    1. Grisaru-Tal S., Dulberg S., Beck L., Zhang C., Itan M., Hediyeh-Zadeh S., Caldwell J., Rozenberg P., Dolitzky A., Avlas S., et al. Metastasis-entrained eosinophils enhance lymphocyte-mediated antitumor immunity. Cancer Res. 2021;81:5555–5571. doi: 10.1158/0008-5472.CAN-21-0839.
    1. Furubayashi N., Minato A., Negishi T., Sakamoto N., Song Y., Hori Y., Tomoda T., Harada M., Tamura S., Miura A., et al. Association between immune-related adverse events and efficacy and changes in the relative eosinophil count among patients with advanced urothelial carcinoma treated by pembrolizumab. Cancer Manag. Res. 2022;14:1641–1651. doi: 10.2147/CMAR.S360473.
    1. Broccard S.P., Kasbi A.A., Bagaria S.P., Jones J., Shoudry M., Gabriel E.M. Liquid biopsies for colorectal cancer: a narrative review of ongoing clinical trials and the current use of this technology at a comprehensive cancer center. J. Gastrointest. Oncol. 2022;13:438–449. doi: 10.21037/jgo-21-470.
    1. Herberts C., Wyatt A.W. Technical and biological constraints on ctDNA-based genotyping. Trends Cancer. 2021;7:995–1009. doi: 10.1016/j.trecan.2021.06.001.
    1. Lengyel C.G., Hussain S., Trapani D., El Bairi K., Altuna S.C., Seeber A., Odhiambo A., Habeeb B.S., Seid F. The emerging role of liquid biopsy in gastric cancer. J. Clin. Med. 2021;10:2108. doi: 10.3390/jcm10102108.
    1. Lu C., Zhu Y., Kong W., Yang J., Zhu L., Wang L., Tang M., Chen J., Li Q., He J., et al. Study protocol for a prospective, open-label, single-arm, phase II study on the combination of tislelizumab, nab-paclitaxel, gemcitabine, and concurrent radiotherapy as the induction therapy for patients with locally advanced and borderline resectable pancreatic cancer. Front. Oncol. 2022;12:879661. doi: 10.3389/fonc.2022.879661.
    1. National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology. Pancreatic Adenocarcinoma. Version 2.2021.
    1. Eisenhauer E.A., Therasse P., Bogaerts J., Schwartz L.H., Sargent D., Ford R., Dancey J., Arbuck S., Gwyther S., Mooney M., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur. J. Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Dindo D., Demartines N., Clavien P.A. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004;240:205–213. doi: 10.1097/.
    1. Besselink M.G., van Rijssen L.B., Bassi C., Dervenis C., Montorsi M., Adham M., Asbun H.J., Bockhorn M., Strobel O., Büchler M.W., et al. Definition and classification of chyle leak after pancreatic operation: a consensus statement by the International Study Group on Pancreatic Surgery. Surgery. 2017;161:365–372. doi: 10.1016/j.surg.2016.06.058.
    1. Bassi C., Marchegiani G., Dervenis C., Sarr M., Abu Hilal M., Adham M., Allen P., Andersson R., Asbun H.J., Besselink M.G., et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years after. Surgery. 2017;161:584–591. doi: 10.1016/j.surg.2016.11.014.
    1. Wente M.N., Veit J.A., Bassi C., Dervenis C., Fingerhut A., Gouma D.J., Izbicki J.R., Neoptolemos J.P., Padbury R.T., Sarr M.G., et al. Postpancreatectomy hemorrhage (PPH): an international study group of pancreatic surgery (ISGPS) definition. Surgery. 2007;142:20–25. doi: 10.1016/j.surg.2007.02.001.
    1. Chen S., Zhou Y., Chen Y., Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560.
    1. Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324.
    1. Lai Z., Markovets A., Ahdesmaki M., Chapman B., Hofmann O., McEwen R., Johnson J., Dougherty B., Barrett J.C., Dry J.R. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016;44:e108. doi: 10.1093/nar/gkw227.
    1. Li Q., Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am. J. Hum. Genet. 2017;100:267–280. doi: 10.1016/j.ajhg.2017.01.004.
    1. Talevich E., Shain A.H., Botton T., Bastian B.C. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput. Biol. 2016;12:e1004873. doi: 10.1371/journal.pcbi.1004873.

Source: PubMed

Подписаться