Pembrolizumab activity in patients with Fanconi anemia repair pathway competent and deficient tumors

Miguel A Villalona-Calero, John P Diaz, Wenrui Duan, Zuanel Diaz, Eric D Schroeder, Santiago Aparo, Troy Gatcliffe, Federico Albrecht, Siddhartha Venkatappa, Victor Guardiola, Sara Garrido, Muni Rubens, Fernando DeZarraga, Hao Vuong, Miguel A Villalona-Calero, John P Diaz, Wenrui Duan, Zuanel Diaz, Eric D Schroeder, Santiago Aparo, Troy Gatcliffe, Federico Albrecht, Siddhartha Venkatappa, Victor Guardiola, Sara Garrido, Muni Rubens, Fernando DeZarraga, Hao Vuong

Abstract

Background: Given the observed antitumor activity of immune-checkpoint-inhibitors in patients with mismatch-repair deficient (MSI-H) tumors, we hypothesized that deficiency in homologous-recombination-repair (HRR) can also influence susceptibility.

Methods: Patients with disease progression on standard of care and for whom pembrolizumab had no FDA approved indication received pembrolizumab. Patients with MSI-H tumors were excluded. Objectives included immune-related objective response rate (iORR), progression-free survival (PFS) and 20-weeks-PFS. Pembrolizumab was given every 3 weeks and scans performed every six. We evaluated a triple-stain (FANCD2foci/DAPI/Ki67) functional assay of the Fanconi Anemia (FA) pathway: FATSI, in treated patients' archived tumors. The two-stage sample size of 20/39 patients evaluated an expected iORR≥20% in the whole population vs. the null hypothesis of an iORR≤5%, based on an assumed iORR≥40% in patients with functional FA deficiency, and < 10% in patients with intact HRR. An expansion cohort of MSI stable endometrial cancer (MS-EC) followed. Exploratory stool microbiome analyses in selected patients were performed.

Results: Fifty-two patients (45F,7M;50-evaluable) were enrolled. For the 39 in the two-stage cohort, response evaluation showed 2CR,5PR,11SD,21PD (iORR-18%). FATSI tumor analyses showed 29 competent (+) and 10 deficient (-). 2PR,9SD,17PD,1NE occurred among the FATSI+ (iORR-7%) and 2CR,3PR,2SD,3PD among the FATSI(-) patients (iORR-50%). mPFS and 20w-PFS were 43 days and 21% in FATSI+, versus 202 days and 70% in FATSI(-) patients. One PR occurred in the MS-EC expansion cohort.

Conclusions: Pembrolizumab has meaningful antitumor activity in malignancies with no current FDA approved indications and FA functional deficiency. The results support further evaluation of FATSI as a discriminatory biomarker for population-selected studies.

Keywords: Biomarkers; DNA repair; FancD2; Fanconi; Homologous recombination; Immune checkpoint inhibitor.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
A The Fanconi anemia pathway and formation of repair foci. Following DNA inter-strand crosslink damage, the FANCM-FAAP24-MHF1-MHF2 anchor complex recruits the FA core complex I, which functions to activate FANCD2 and FANCI by mono-ubiquitinating the proteins. The activated FANCD2 and FANCI heterodimers are subsequently transported to subnuclear foci (encircled), which in collaboration with additional genes result in homologous recombination DNA repair. B The Fanconi Anemia triple stain immunofluorescence method (FATSI) was performed in Paraffin Embedded Solid Tumor slides stained with FATSI as observed with immunofluorescence microscope (400x). Left, FATSI positive (competent pathway); Right, FATSI negative (deficient pathway). DAPI (blue), Ki67 (red) and FANCD2 (green)
Fig. 2
Fig. 2
Kaplan Meier curves comparing progression free survival by FATSI status (P for logrank, 0.03). X-axis corresponds to progression free survival in months and Y-axis corresponds to survival probability. FATSI negative patients’ curve in blue; FATSI positives in red. + = censored
Fig. 3
Fig. 3
“Swimmers Plot” for Individual Patients Progression Free Survival Divided According to Their Tumors FATSI status. Each bar represents one subject on study. X-axis, number of days progression free; Y-axis individual patients. Individuals’ best tumor response outcomes are indicated by labels
Fig. 4
Fig. 4
Microbiome data from stool specimens of patients on the study. A Taxonomy bar plots of top 25 species. B LEfSe plot illustrating discriminating features between response groups. CR = complete response; PD = progressive disease; PR = partial response; SD = stable disease

References

    1. Le DT, Uram J, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–2520. doi: 10.1056/NEJMoa1500596.
    1. Marcus L, Steven J, Lemery S, et al. FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019;18:4070.
    1. André T, Shiu K, Kim T, el al. Pembrolizumab in microsatellite-instability–high advanced colorectal Cancer. N Engl J Med. 2020;383:2207–2218. doi: 10.1056/NEJMoa2017699.
    1. Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–917. doi: 10.1038/nature03443.
    1. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–921. doi: 10.1038/nature03445.
    1. Tutt A, Robson M, Garber J, et al. Phase II trial of the oral PARP inhibitor olaparib in BRCA-deficient advanced breast cancer. J Clin Oncol. 2009;27(18s):CRA501. doi: 10.1200/jco.2009.27.18_suppl.cra501.
    1. Fong P, Boss D, Yap T, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–134. doi: 10.1056/NEJMoa0900212.
    1. Audeh MW, Carmichael J, Penson RT, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010;376(9737):245–251. doi: 10.1016/S0140-6736(10)60893-8.
    1. Bagby GC., Jr Genetic basis of Fanconi anemia. Curr Opin Hematol. 2003;10(1):68–76. doi: 10.1097/00062752-200301000-00011.
    1. D'Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3:23–34. doi: 10.1038/nrc970.
    1. Reid S, Schindler D, Hanenberg H, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet. 2007;39(2):162–164. doi: 10.1038/ng1947.
    1. Xia B, Dorsman JC, Ameziane N, et al. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet. 2007;39(2):159–161. doi: 10.1038/ng1942.
    1. Smogorzewska A, Matsuoka S, Vinciguerra P, et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell. 2007;129(2):289–301. doi: 10.1016/j.cell.2007.03.009.
    1. Kim Y, Lach FP, Desetty R, et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet. 2011;43:138–141. doi: 10.1038/ng.751.
    1. Vaz F, Hanenberg H, Schuster B, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet. 2010;42:406–409. doi: 10.1038/ng.570.
    1. Machida YJ, Machida Y, Chen Y, et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol Cell. 2006;23(4):589–596. doi: 10.1016/j.molcel.2006.06.024.
    1. Meetei AR, Yan Z, Wang W, et al. FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiquitination. Cell Cycle. 2004;3(2):179–181. doi: 10.4161/cc.3.2.656.
    1. Garcia-Higuera I, Taniguchi T, Ganesan S, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell. 2000;7(2):249–262. doi: 10.1016/S1097-2765(01)00173-3.
    1. Duan W, Gao L, Zhao W, et al. Assessment of FANCD2 nuclear foci formation in paraffin embedded tumors: a potential patient enrichment strategy for treatment with DNA interstrand crosslink agents. Transl Res. 2013;161(3):156–164. doi: 10.1016/j.trsl.2012.09.003.
    1. Villalona-Calero MA, Duan W, Zhao W, et al. Veliparib alone or in combination with Mitomycin C in patients with solid tumors with functional deficiency in homologous recombination repair. J Natl Cancer Inst. 2016;4:108(7).
    1. Eisenhauer E, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Ca. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Wolchok JD, Hoos A, O'Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–7420. doi: 10.1158/1078-0432.CCR-09-1624.
    1. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–1084. doi: 10.1126/science.aad1329.
    1. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–1089. doi: 10.1126/science.aac4255.
    1. Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, No D, Gobourne A, Littmann E, Huttenhower C, Pamer EG, Wolchok JD. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 2016;7:10391. doi: 10.1038/ncomms10391.
    1. Liu CM, Aziz M, Kachur S, et al. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 2012;12:56. doi: 10.1186/1471-2180-12-56.
    1. Beghini, et al. bioRxiv. 2020. 10.1101/2020.11.19.388223.
    1. Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60.
    1. Rizvi NA, Hellmann M, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–128. doi: 10.1126/science.aaa1348.
    1. Taniguchi T, Tischkowitz M, Ameziane N, et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 2003;9(5):568–574. doi: 10.1038/nm852.
    1. Hussain M, Mateo J, Fizazi K, et al. Survival with Olaparib in metastatic castration-resistant prostate Cancer. N Engl J Med. 2020;383(24):2345–2357. doi: 10.1056/NEJMoa2022485.
    1. Eikesdal H, Yndestad S, Elzawahry A, et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. Ann Oncol. 2021;32(2):240–249. doi: 10.1016/j.annonc.2020.11.009.
    1. Telli M, Timms K, Reid J, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple negative breast cancer. Clin Cancer Res. 2016;22(15):3764–3773. doi: 10.1158/1078-0432.CCR-15-2477.
    1. Wang Z, Li M, Lu S, et al. Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemia-BRCA pathway. Cancer Biol Ther. 2006;5(3):256–260. doi: 10.4161/cbt.5.3.2380.
    1. Poh W, Dilley R, Moliterno A, et al. BRCA1 promoter methylation is linked to defective homologous recombination repair and elevated miR-155 to disrupt myeloid differentiation in myeloid malignancies. Clin Cancer Res. 2019;25(8):2513–2522. doi: 10.1158/1078-0432.CCR-18-0179.
    1. Stults DM, Killen MW, Shelton BJ, et al. Recombination phenotypes of the NCI-60 collection of human cancer cells. BMC Mol Biol. 2011;12:23. doi: 10.1186/1471-2199-12-23.
    1. Ott P, Bang Y, Berton-Rigaud D, et al. Safety and antitumor activity of Pembrolizumab in advanced programmed death ligand 1-positive endometrial Cancer: results from the KEYNOTE-028 study. J Clin Oncol. 2017;35:2535–2541. doi: 10.1200/JCO.2017.72.5952.
    1. Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–97. doi: 10.1126/science.aan3706.
    1. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103. doi: 10.1126/science.aan4236.
    1. Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–108. doi: 10.1126/science.aao3290.
    1. Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602. doi: 10.1126/science.abf3363.

Source: PubMed

Подписаться