Edible Insects versus Meat-Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health

Agnieszka Orkusz, Agnieszka Orkusz

Abstract

Recently, attention has been drawn to the fact that increasing the consumption of edible insects may positively impact the state of the natural environment and reduce the problem of malnutrition in large parts of society. Indeed, insects are seen as an alternative to traditional meat products, primarily meat. This article aimed to compare the nutritional value of edible insects and meat. Based on tables of composition and nutritional value and on the licensed computer program Diet 6D, data on the nutritional value of 10 commonly consumed meat types were compiled. Based on a literature review, data on the nutritional value of seven commercially available edible insect species were collected and collated. There was a comparison of 100 g of edible insects with 100 g of meat (fresh weight). In addition, the atherogenic index thrombogenic index, the hypocholesterolemic/hypercholesterolemic ratio, and the nutritional quality index were calculated. It was found that both meat and insects are rich in nutrients, including those considered essential for the proper development and functioning of the human body. At the same time, it has been shown that the content of individual nutrients in both insects and meat varies significantly.

Keywords: diet; edible insects; environmental concern; human health; meat; nutritional value.

Conflict of interest statement

The author declares no conflict of interest.

References

    1. Kaneda T., Bietsch K. World Population Data Sheet, 2020. Population Reference Bureau, pp. 3-21/15. [(accessed on 29 March 2021)]; Available online: .
    1. United Nations, Department of Economic and Social Affairs, Population Division . World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. United Nations; New York, NY, USA: 2017. Working Paper No. ESA/P/WP/248.
    1. Worldometer 2020. [(accessed on 29 March 2021)]; Available online:
    1. Alexandratos N., Bruinsma J. World Agriculture Towards 2030/2050: The 2012 Revision. FAO; Rome, Italy: 2012. ESA Working Paper.
    1. Rumpold B.A., Oliver K. Schluter, Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013;17:1–11. doi: 10.1016/j.ifset.2012.11.005.
    1. Berardy A., Costello C., Seager T. Life cycle assessment of soy protein isolate; Proceedings of the International Symposium on Sustainable Systems and Technologies 3; Dearborn, MI, USA. 18–20 May 2015.
    1. Imathiu S. Benefits and food safety concerns associated with consumption of edible insects. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020;18:1–11. doi: 10.1016/j.nfs.2019.11.002.
    1. Oonincx D.G.A.B., de Boer I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans–A Life Cycle Assessment. PLoS ONE. 2012;7:51145. doi: 10.1371/journal.pone.0051145.
    1. Van Huis A., Klunder J.V.I.H., Merten E., Halloran A., Vantomme P. Future Prospects for Food and Feed Security. Food and Agriculture Organisation of the United Nations (FAO); Rome, Italy: 2013. Edible insects. Fao Forestry Papers.
    1. De Gier S., Verhoeckx K. Insect (food) allergy and allergens. Mol. Immunol. 2018;100:82–106. doi: 10.1016/j.molimm.2018.03.015.
    1. Van Huis A., van Gurp H., Dicke M. The Insect Cookbook. Food for a Sustainable Planet. Columbia University Press; New York, NY, USA: 2014.
    1. Jongema Y. LIST2017 avh.xls (). List of edible insects of the world-WUR, 2017. [(accessed on 29 December 2020)]; Available online: .
    1. European Parliament and Council of the European Union Regulation (EU) 2015/ 2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliam. Off. J. Eur. Union. 2015;327:1–22.
    1. EFSA Scientific Committee Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015;13:4257.
    1. EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens) Turck D., Castenmiller J., De Henauw S., Hirsch-Ernst K.I., Kearney J., Maciuk A., Mangelsdorf I., McArdle H.J., Naska A., et al. Scientific Opinion on the safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021;19:1. doi: 10.2903/j.efsa.2021.6343.
    1. Wilkinson K., Muhlhausler B., Motley C., Crump A., Bray H., Ankeny R. Australian consumers’ awareness and acceptance of insects as food. Insects. 2018;9:44. doi: 10.3390/insects9020044.
    1. Orkusz A., Wolańska W., Harasym J., Piwowar A., Kapelko M. Consumers’ Attitudes Facing Entomophagy: Polish Case Perspectives. Int. J. Environ. Res. Public Health. 2020;17:2427. doi: 10.3390/ijerph17072427.
    1. Kromhout D., Spaaij C.J.K., de Goede J., Weggemans R.M. The 2015 Dutch food-based dietary guidelines. Eur. J. Clin. Nutr. 2016;70:869–878. doi: 10.1038/ejcn.2016.52.
    1. Missmer S.A., Smith-Warner S.A., Spiegelman D., Yaun S.S., Adami H.O., Beeson W.L., van den Brandt P.A., Fraser G.E., Freudenheim J.L., Goldbohm R.A., et al. Meat and dairy food consumption and breast cancer: A pooled analysis of cohort studies. Int. J. Epidemiol. 2002;31:78–85. doi: 10.1093/ije/31.1.78.
    1. Huxley R.R., Ansary-Moghaddam A., Clifton P., Czernichow S., Parr C.L., Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: A quantitative overview of the epidemiological evidence. Int. J. Cancer. 2009;125:171–180. doi: 10.1002/ijc.24343.
    1. Spencer E.A., Key T.J., Appleby P.N., Dahm C.C., Keogh R.H., Fentiman I.S., Akbaraly T., Brunner E.J., Burley V., Cade J.E., et al. Meat, poultry and fish and risk of colorectal cancer: Pooled analysis of data from the UK dietary cohort consortium. Cancer Causes Control. 2010;21:1417–1425. doi: 10.1007/s10552-010-9569-7.
    1. Yang W.S., Wong M.Y., Vogtmann E., Tang R.Q., Xie L., Yang Y.S., Wu Q.J., Zhang W., Xiang Y.B. Meat consumption and risk of lung cancer: Evidence from observational studies. Ann. Oncol. 2012;23:3163–3170. doi: 10.1093/annonc/mds207.
    1. Feskens E.J., Sluik D., van Woudenbergh G.J. Meat consumption, diabetes, and its complications. Curr. Diab. Rep. 2013;13:298–306. doi: 10.1007/s11892-013-0365-0.
    1. Abete I., Romaguera D., Vieira A.R., Lopez de M.A., Norat T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: A meta-analysis of cohort studies. Br. J. Nutr. 2014;112:762–775. doi: 10.1017/S000711451400124X.
    1. Belluco S., Losasso C., Maggioletti M., Alonzi C.C., Paoletti M.G., Ricci A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. F. 2013;12:296313. doi: 10.1111/1541-4337.12014.
    1. Rumpold B.A., Schluter O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013;57:802823. doi: 10.1002/mnfr.201200735.
    1. Vantomme P., Munke C., Van Huis A., Van Itterbeeck J., Hakman A. Insects to Feed the World: Summary Report. Wageningen University and Research Center; Wageingen, The Netherlands: 2014. [(accessed on 29 December 2020)]. Available online:
    1. Payne C.L.R., Scarborough P., Rayner M., Nonaka K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference value. Trends Food Sci. Technol. 2016;47:69–77. doi: 10.1016/j.tifs.2015.10.012.
    1. Payne C.L.R., Scarborough P., Rayner M., Nonaka K. Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. Eur. J. Clin. Nutr. 2016;70:285–291. doi: 10.1038/ejcn.2015.149.
    1. Nowak V., Persijn D., Rittenschober D., Charrondiere U.R. Review of food composition data for edible insects. Food Chem. 2016;193:39–46. doi: 10.1016/j.foodchem.2014.10.114.
    1. Rumpold B.A., Schluter O.K. Nutrient composition of insects and their potential application in food and feed in Europe. Food Chain. 2014;4:129–139. doi: 10.3362/2046-1887.2014.013.
    1. Kulma M., Kouřimská L., Homolková D., Božik M., Plachý V., Vrabec V. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. J. Food Compos. Anal. 2019;92:1–8. doi: 10.1016/j.foodchem.2018.08.049.
    1. De Smet S., Vossen E. Meat: The balance between nutrition and health. A review. Meat Sci. 2016;120:145–156. doi: 10.1016/j.meatsci.2016.04.008.
    1. Bastide N.M., Pierre F.H.F., Corpet D.E. Heme Iron from Meat and Risk of Colorectal Cancer: A Meta-analysis and a Review of the Mechanisms Involved. Cancer Prev. Res. 2011;4:177–184. doi: 10.1158/1940-6207.CAPR-10-0113.
    1. FAO INFOODS, 2013 . FAO/INFOODS Databases. Food Composition Database for Biodiversity Version 2.1- BioFoodComp2.1. FAO; Rome, Italy: 2007.
    1. Thai food composition database 2015 (thai fcd 2015), Mahidol university, Institute of Nutrition. [(accessed on 29 December 2020)]; Available online:
    1. Computer program Diet 6D, Independent Laboratory of Epidemiology and Nutrition Standards. Institute of Food and Nutrition; Warsaw, Poland: 2018.
    1. Ulbricht T.L.V., Southgate D.A.T. Coronary disease seven dietary factors. Lancet. 1991;338:985–992. doi: 10.1016/0140-6736(91)91846-M.
    1. Fernandez M., Ordonez J.A., Cambero I., Santos C., Pin C., De la Hoz L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007;101:107–112. doi: 10.1016/j.foodchem.2006.01.006.
    1. Santos-Silva J., Bessa R.J.B., Santos-Silva F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 2002;77:187–194. doi: 10.1016/S0301-6226(02)00059-3.
    1. Gawęcki J., editor. Human Nutrition. Fundamentals of the Science of Nutrition. PWN; Warsaw, Poland: 2012. pp. 371–372.
    1. Jarosz M., Rychlik E., Stoś K., Charzewska J., editors. Nutrition Standards for the Population of Poland and Their Application. National Institute of Public Health–National Institute of Hygien; Warsaw, Poland: 2020.
    1. Finke M.D. Complete Nutrient Content of four Species of commercialy availablefeeder insects fed enhanced diets during growth. Zoo Biol. 2015;34:554–564. doi: 10.1002/zoo.21246.
    1. Finke M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002;21:269–285. doi: 10.1002/zoo.10031.
    1. Finke M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007;26:105–115. doi: 10.1002/zoo.20123.
    1. Tang Y., Debnath T., Choi E.-J., Kim Y.W., Ryu J.P., Jang S., Chung S.U., Choi Y.-J., Kim E.-K. Changes in the amino acid profiles and free radical scavenging activities of Tenebrio molitor larvae following enzymatic hydrolysis. PLoS ONE. 2018;13:e0196218. doi: 10.1371/journal.pone.0196218.
    1. Ritvanen T., Pastell H., Welling A., Raatikainen M. The nitrogen-to-protein conversion factor of two cricket species - Acheta domesticus and Gryllus bimaculatus. Agri. Food Sci. 2020;29:1–5. doi: 10.23986/afsci.89101.
    1. Siulapwa N., Mwambungu A., Lungu E., Sichilima W. Nutritional Value of Four Common Edible Insects in Zambia. IJSR. 2012;3:876–884.
    1. Rapatsa M.M., Moyo N.A.G. Evaluation of Imbrasia belina meal as a fishmeal substitute in Oreochromis mossambicus diets: Growth performance, histological analysis and enzyme activity. Aquac. Rep. 2017;5:18–26. doi: 10.1016/j.aqrep.2016.11.004.
    1. Lategan A. Masters’s Thesis. Volume 1–88. Stellenbosch University, Department of Food Science, Faculty of Agri Sciences; Stellenbosch, South Africa: Apr, 2019. An assessment of the potential of edible insect consumption in reducing human nutritional deficiencies in South Africa while considering food and nutrition security aspects; p. 40.
    1. Listrat A., Lebret B., Louveau I., Astruc T., Bonnet M., Lefaucheur L., Picard B., Bugeon J. How Muscle Structure and Composition Influence Meat and Flesh Quality. Sci. World J. 2016:1–14. doi: 10.1155/2016/3182746.
    1. Park S.J., Beak S.H., Jung D.J.S., Kim S.Y., Jeong I.H., Piao M.Y., Kang H.J., Fassah D.M., Na S.W., Yoo S.P., et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle–A review. Asian-Australas. J. Anim. Sci. 2018;31:1043–1061. doi: 10.5713/ajas.18.0310.
    1. Kulma M., Plachý V., Kouřimská L., Vrabec V., Bubová T., Adámková A., Hučko B. Nutritional value of three Blattodea species used as feed for animals. J. Anim. Feed Sci. 2016;25:354–360. doi: 10.22358/jafs/67916/2016.
    1. Naseema Begum A., Rakesh B., Sudhakara Rao P., Mamatha M. Biochemical analysis of fat bodies of the popular silkworm breeds/hybrids and foundation crosses. Indian J. Anim. Res. 2014;48:134. doi: 10.5958/j.0976-0555.48.2.029.
    1. Ademolu K.O., Simbiat E.S., Concilia I.I., Adeyinka A.A., Abiodun O.J., Adebola A.O. Gender variations in nutritive value of adult variegated grasshopper, Zonocerus variegatus (L) (Orthoptera: Pygomorphidae) J. Kans. Entomol. Soc. 2017;90:117–121. doi: 10.2317/170325.1.
    1. Kulma M., Kouřimská L., Plachý V., Božik M., Adámková A., Vrabec V. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem. 2019;272:267–272. doi: 10.1016/j.foodchem.2018.08.049.
    1. Oonincx D.G.A.B., van der Poel A.F.B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria) Zoo Biol. 2011;30:9–16. doi: 10.1002/zoo.20308.
    1. Harsányi E., Juhász C., Kovács E., Huzsvai L., Pintér R., Fekete G., Varga Z.I., Aleksza L., Gyuricza C. Evaluation of Organic Wastes as Substrates for Rearing Zophobas morio, Tenebrio molitor, and Acheta domesticus Larvae as Alternative Feed Supplements. Insects. 2020;11:604. doi: 10.3390/insects11090604.
    1. Akhtar Y., Isman M.B. Food Science, Technology and Nutrition. Woodhead Publishing Series; Cambridge, UK: 2018. Insects as an Alternative Protein Source. Proteins in Food Processing; pp. 263–288.
    1. Zielinska E., Karas M., Baraniak B. Comparison of functional properties of edible insects and protein preparations thereof. LWT-Food Sci. Technol. 2018;91:168–174. doi: 10.1016/j.lwt.2018.01.058.
    1. Chen X., Feng Y., Chen Z. Common edible insects and their utilization in China. Entomol. Res. 2009;39:299–303. doi: 10.1111/j.1748-5967.2009.00237.x.
    1. Reddiex A.J., Gosden T.P., Bonduriansky R., Chenoweth S.F. Sex-Specific Fitness Consequences of Nutrient Intake and the Evolvability of Diet Preferences. Am Nat. 2013;182:91–102. doi: 10.1086/670649.
    1. Meng H., Matthan N.R., Wu D., Li L., Rodríguez-Morató J., Cohen R., Galluccio J.M., Dolnikowski G.G., Lichtenstein A.H. Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women—Randomized crossover trial. Am. J. Clin. Nutr. 2019;110:305–315. doi: 10.1093/ajcn/nqz095.
    1. Shramko V.S., Polonskaya Y.V., Kashtanova E.V., Stakhneva E.M., Ragino Y.I. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules. 2020;10:1127. doi: 10.3390/biom10081127.
    1. Hlais S., El-Bistami D., El Rahi B., Mattar M.A., Obeid O. Combined Fish Oil and High Oleic Sunflower Oil Supplements Neutralize their Individual Effects on the Lipid Profile of Healthy Men. Lipids. 2013;48:853–861. doi: 10.1007/s11745-013-3819-x.
    1. Pérez-Martínez P., García-Ríos A., Delgado F.G., Jiménez F.P., López-Miranda J. Mediterranean diet rich in olive oil and obesity, metabolic syndrome and diabetes mellitus. Curr. Pharm. Des. 2011;17:769–777. doi: 10.2174/138161211795428948.
    1. Simopoulos A.P., De Meester F. A balanced omega-6/omega-3 fatty acid ratio, cholesterol and coronary heart disease. World Rev. Nutr. Diet. 2009;100:110–121.
    1. Husted K.S., Bouzinova E.V. The importance of n-6/n-3 fatty acids ratio in the major depressive disorder. Medicina. 2016;52:139–147. doi: 10.1016/j.medici.2016.05.003.
    1. Food, Nutrition, Physical Activity and the Prevention of Cancer: A Global Perspective. Word Cancer Research Fund/American Institute for Cancer Research; Washington DC, USA: 2007.
    1. Ekpo K.E., Onigbinde A.O. Characterization of lipids in winged reproductives of the termite macrotermis bellicosus. Pak. J. Nutr. 2007;6:247–251. doi: 10.3923/pjn.2007.247.251.
    1. Orkusz A., Michalczuk M. Effect of Packaging Atmosphere on the Fatty Acid Profile of Intramuscular, Subcutaneous Fat, and Odor of Goose Meat. Poultry Sci. 2020;99:647–652. doi: 10.3382/ps/pez528.
    1. Walters M.E., Esfandi R., Tsopmo A. Potential of Food Hydrolyzed Proteins and Peptides to Chelate Iron or Calcium and Enhance their Absorption. Foods. 2018;7:172. doi: 10.3390/foods7100172.
    1. Awuchi C.G.I., Ikechukwu V.S.A., Echeta C.K. Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. Int. J. Food Sci. 2020;3:1–32.
    1. Sunyecz J. The use of calcium and vitamin D in the management of osteoporosis. Ther. Clin. Risk Manag. 2008;4:827–836. doi: 10.2147/TCRM.S3552.
    1. Reid I., Bristow R., Bolland S.M., Mark J. Review Article Calcium and Cardiovascular Disease. Endocrinol. Metab. 2017;32:339–349. doi: 10.3803/EnM.2017.32.3.339.
    1. Elders P.J., Lips P., Netelenbos J.C., Van Ginkel F.C., Khoe E., Van der Vijgh W.J., Van der Stelt P.F. Long-term effect of calcium supplementation on bone loss in perimenopausal women. J. Bone Miner. Res. 1994;9:963–970. doi: 10.1002/jbmr.5650090702.
    1. Beto J. The Role of Calcium in Human Aging. Clin. Nutr. Res. 2015;4:1–8. doi: 10.7762/cnr.2015.4.1.1.
    1. Aspuru K., Villa C., Bermejo F., Herrero P., García López S. Optimal management of iron deficiency anemia due to poor dietary intake. Int. J. Gen. Med. 2011;4:741–750. doi: 10.2147/IJGM.S17788.
    1. Sturtzel B., Elmadfa I., Hermann B., Schippinger W., Ohrenberger G. Effects of an enhanced iron dense foods offering in the daily meals served in geriatric institutions on measures of iron deficiency anemia. BMC Geriatr. 2018;18:1–7. doi: 10.1186/s12877-018-0800-9.
    1. Tardy A.L., Pouteau E., Marquez D., Yilmaz C., Scholey A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients. 2020;12:228. doi: 10.3390/nu12010228.
    1. McNulty H., Ward M., Hoey L., Hughes C.F., Pentieva K. Addressing optimal folate and related B-vitamin status through the lifecycle: Health impacts and challenges. Proc. Nutr. Soc. 2019;78:449–462. doi: 10.1017/S0029665119000661.
    1. Sheng L.T., Jiang Y.W., Pan X.F., Feng L., Yuan J.M., Pan A., Koh W.P. Association between Dietary Intakes of B Vitamins in Midlife and Cognitive Impairment in Late-Life: The Singapore Chinese Health Study. J. Gerontol. A Biol. Sci. Med. Sci. 2020;75:1222–1227. doi: 10.1093/gerona/glz125.
    1. Whitfield K.C., da Silva L., Feldman F., Singh S., McCann A., McAnena L., Ward M., McNulty H., Barr S.I., Green T.J. Adequate vitamin B12 and riboflavin status from menus alone in residential care facilities in the Lower Mainland, British Columbia. Appl. Physiol. Nutr. Metab. 2019;44:414–419. doi: 10.1139/apnm-2018-0459.
    1. Vahid F., Hekmatdoost A., Mirmajidi S. Association Between Index of Nutritional Quality and Nonalcoholic Fatty Liver Disease: The Role of Vitamin D and B Group. Am. J. Med. Sci. 2019;358:212–218. doi: 10.1016/j.amjms.2019.06.008.
    1. Thakur K., Tomar S.K., De S. Lactic acid bacteria as a cell factory for riboflavin production. Microb. Biotechnol. 2016;9:441–451. doi: 10.1111/1751-7915.12335.
    1. Ashoori M., Saedisomeolia A. Riboflavin (vitamin B2) and oxidative stress: A review. Br. J. Nutr. 2014;111:1985–1991. doi: 10.1017/S0007114514000178.
    1. DiBaise M., Tarleton S.M. Hair, Nails, and Skin: Differentiating Cutaneous Manifestations of Micronutrient Deficiency. Nutr. Clin. Pract. 2019;34:490–503. doi: 10.1002/ncp.10321.
    1. Lee J.H., Lee S.A., Kim H.D. Periodontitis and intake of thiamine, riboflavin and niacin among Korean adults, Community. Dent. Oral Epidemiol. 2020;48:21–31. doi: 10.1111/cdoe.12496.
    1. Calvo Romero J.M., Ramiro Lozano J.M. Vitamin B12 in type 2 diabetic patients treated with metformin. Endocrinol. Nutr. 2012;59:487–490. doi: 10.1016/j.endonu.2012.06.005.
    1. Serrano J., Gibril F., Yu F., Goebel S., Jensen R. Gastric antisecretory drug-induced achlorhydria causes decreases in serum vitamin B12 levels in patients with zollinger-ellison syndrome (ZES): A prospective study. Gastroenterology. 1998;114:282. doi: 10.1016/S0016-5085(98)81146-3.

Source: PubMed

Подписаться