Obesity: pathophysiology and intervention

Yi Zhang, Ju Liu, Jianliang Yao, Gang Ji, Long Qian, Jing Wang, Guansheng Zhang, Jie Tian, Yongzhan Nie, Yi Edi Zhang, Mark S Gold, Yijun Liu, Yi Zhang, Ju Liu, Jianliang Yao, Gang Ji, Long Qian, Jing Wang, Guansheng Zhang, Jie Tian, Yongzhan Nie, Yi Edi Zhang, Mark S Gold, Yijun Liu

Abstract

Obesity presents a major health hazard of the 21st century. It promotes co-morbid diseases such as heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis. Excessive energy intake, physical inactivity, and genetic susceptibility are main causal factors for obesity, while gene mutations, endocrine disorders, medication, or psychiatric illnesses may be underlying causes in some cases. The development and maintenance of obesity may involve central pathophysiological mechanisms such as impaired brain circuit regulation and neuroendocrine hormone dysfunction. Dieting and physical exercise offer the mainstays of obesity treatment, and anti-obesity drugs may be taken in conjunction to reduce appetite or fat absorption. Bariatric surgeries may be performed in overtly obese patients to lessen stomach volume and nutrient absorption, and induce faster satiety. This review provides a summary of literature on the pathophysiological studies of obesity and discusses relevant therapeutic strategies for managing obesity.

Figures

Figure 1
Figure 1
Brain circuits related to obesity. The circuits include motivation-drive (e.g., OFC), reward-saliency (e.g., VTA and NAc), inhibitory-control (e.g., DLPFC, ACC, and VMPFC) and learning-memory (e.g., AMY, HIPP, and Putamen). Gray dotted lines represent functional interactions between the brain circuits. In this model, during exposure to the reinforcer (i.e., foods) or to the cues conditioned to the reinforcer, there appears to be an obesity-related lower perception of reward (processed by the learning-memory circuit), which promotes overactivation of the reward-saliency and motivation-drive circuits while decreasing the inhibitory-control circuit activity. The overall outcome in obese persons is a lessened ability or an inability to inhibit the drive to seek and consume foods.

References

    1. Rayner G., Lang T. Clinical Obesity in Adults and Children. Wiley-Blackwell; Malden, USA: 2009. Obesity: Using the ecologic public health approach to overcome policy cacophony; pp. 452–470.
    1. Pi-Sunyer X. The medical risks of obesity. Postgrad. Med. 2009;121:21–33. doi: 10.3810/pgm.2009.11.2074.
    1. Campos P., Saguy A., Ernsberger P., Oliver E., Gaesser G. The epidemiology of overweight and obesity: Public health crisis or moral panic? Int. J. Epidemiol. 2006;35:55–60. doi: 10.1093/ije/dyi254.
    1. Von Deneen K.M., Liu Y. Obesity as an addiction: Why do the obese eat more? Maturitas. 2011;68:342–345. doi: 10.1016/j.maturitas.2011.01.018.
    1. Avena N.M., Gold J.A., Kroll C., Gold M.S. Further developments in the neurobiology of food and addiction: Update on the state of the science. Nutrition. 2012;28:341–343. doi: 10.1016/j.nut.2011.11.002.
    1. Cho J., Juon H.S. Assessing Overweight and Obesity Risk among Korean Americans in California Using World Health Organization Body Mass Index Criteria for Asians. [(accessed on 23 June 2014)]. Available online: .
    1. Ogden C.L., Carroll M.D., Curtin L.R., McDowell M.A., Tabak C.J., Flegal K.M. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA. 2006;295:1549–1555. doi: 10.1001/jama.295.13.1549.
    1. Wang Y., Beydoun M.A., Liang L., Caballero B., Kumanyika S.K. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring) 2008;16:2323–2330. doi: 10.1038/oby.2008.351.
    1. Fincham J.E. The expanding public health threat of obesity and overweight. Int. J. Pharm. Pract. 2011;19:214–216. doi: 10.1111/j.2042-7174.2011.00126.x.
    1. Flegal K.M., Graubard B.I., Williamson D.F., Gail M.H. Excess deaths associated with underweight, overweight, and obesity. JAMA. 2005;293:1861–1867. doi: 10.1001/jama.293.15.1861.
    1. Calle E.E., Rodriguez C., Walker-Thurmond K., Thun M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N. Engl. J. Med. 2003;348:1625–1638. doi: 10.1056/NEJMoa021423.
    1. Adams K.F., Schatzkin A., Harris T.B., Kipnis V., Mouw T., Ballard-Barbash R., Hollenbeck A., Leitzmann M.F. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N. Engl. J. Med. 2006;355:763–778. doi: 10.1056/NEJMoa055643.
    1. Davis C., Carter J.C. Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite. 2009;53:1–8. doi: 10.1016/j.appet.2009.05.018.
    1. French S.A., Story M., Fulkerson J.A., Gerlach A.F. Food environment in secondary schools: A la carte, vending machines, and food policies and practices. Am. J. Public Health. 2003;93:1161–1167. doi: 10.2105/AJPH.93.7.1161.
    1. Frazao E., Allshouse J. Strategies for intervention: Commentary and debate. J. Nutr. 2003;133:844S–847S.
    1. Wadden T.A., Clark V.L. Clinical Obesity in Adults and Children. Wiley-Blackwell; Malden, MA, USA: 2005. Behavioural treatment of obesity: Achievements and challenges; pp. 350–362.
    1. Stice E., Spoor S., Ng J., Zald D.H. Relation of obesity to consummatory and anticipatory food reward. Physiol. Behav. 2009;97:551–560. doi: 10.1016/j.physbeh.2009.03.020.
    1. Swanson S.A., Crow S.J., le Grange D., Swendsen J., Merikangas K.R. Prevalence and correlates of eating disorders in adolescents. Results from the national comorbidity survey replication adolescent supplement. Arch. Gen. Psychiatry. 2011;68:714–723. doi: 10.1001/archgenpsychiatry.2011.22.
    1. Lebow J., Sim L.A., Kransdorf L.N. Prevalence of a history of overweight and obesity in adolescents with restrictive eating disorders. J. Adolesc. Health. 2014 in press.
    1. Baile J.I. Binge eating disorder: Officially recognized as the new eating disorder. Rev. Med. Chil. 2014;142:128–129. doi: 10.4067/S0034-98872014000100022.
    1. Iacovino J.M., Gredysa D.M., Altman M., Wilfley D.E. Psychological treatments for binge eating disorder. Curr. Psychiatry Rep. 2012;14:432–446. doi: 10.1007/s11920-012-0277-8.
    1. Hudson J.I., Hiripi E., Pope H.J., Kessler R.C. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol. Psychiatry. 2007;61:348–358. doi: 10.1016/j.biopsych.2006.03.040.
    1. Westerburg D.P., Waitz M. Binge-eating disorder. Osteopath. Fam. Phys. 2013;5:230–233. doi: 10.1016/j.osfp.2013.06.003.
    1. Gearhardt A.N., White M.A., Potenza M.N. Binge eating disorder and food addiction. Curr. Drug Abuse Rev. 2011;4:201–207. doi: 10.2174/1874473711104030201.
    1. Avena N.M., Rada P., Hoebel B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 2008;32:20–39. doi: 10.1016/j.neubiorev.2007.04.019.
    1. Johnson P.M., Kenny P.J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 2010;13:635–641. doi: 10.1038/nn.2519.
    1. Zilberter T. Food addiction and obesity: Do macronutrients matter? Front. Neuroenergetics. 2012;4:7. doi: 10.3389/fnene.2012.00007.
    1. Wang G.J., Volkow N.D., Thanos P.K., Fowler J.S. Similarity between obesity and drug addiction as assessed by neurofunctional imaging: A concept review. J. Addict. Dis. 2004;23:39–53. doi: 10.1300/J069v23n03_04.
    1. Hebebrand J., Albayrak O., Adan R., Antel J., Dieguez C., de Jong J., Leng G., Menzies J., Mercer J.G., Murphy M., et al. “Eating addiction”, rather than “food addiciton”, better captures addictive-like eating behavior. Neurosci. Biobehav. Rev. 2014;47:295–306. doi: 10.1016/j.neubiorev.2014.08.016.
    1. Page R.M., Brewster A. Depiction of food as having drug-like properties in televised food advertisements directed at children: Portrayals as pleasure enhancing and addictive. J. Pediatr. Health Care. 2009;23:150–157. doi: 10.1016/j.pedhc.2008.01.006.
    1. Wang G.J., Volkow N.D., Thanos P.K., Fowler J.S. Imaging of brain dopamine pathways: Implications for understanding obesity. J. Addict. Med. 2009;3:8–18. doi: 10.1097/ADM.0b013e31819a86f7.
    1. Dagher A. The neurobiology of appetite: Hunger as addiction. Int. J. Obes. (Lond.) 2009;33:S30–S33. doi: 10.1038/ijo.2009.69.
    1. Ifland J.R., Preuss H.G., Marcus M.T., Rourke K.M., Taylor W.C., Burau K., Jacobs W.S., Kadish W., Manso G. Refined food addiction: A classic substance use disorder. Med. Hypotheses. 2009;72:518–526. doi: 10.1016/j.mehy.2008.11.035.
    1. Spring B., Schneider K., Smith M., Kendzor D., Appelhans B., Hedeker D., Pagoto S. Abuse potential of carbohydrates for overweight carbohydrate cravers. Psychopharmacology (Berl.) 2008;197:637–647. doi: 10.1007/s00213-008-1085-z.
    1. Stice E., Spoor S., Bohon C., Small D.M. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science. 2008;322:449–452. doi: 10.1126/science.1161550.
    1. Noble E.P., Blum K., Ritchie T., Montgomery A., Sheridan P.J. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch. Gen. Psychiatry. 1991;48:648–654. doi: 10.1001/archpsyc.1991.01810310066012.
    1. Gearhardt A.N., Roberto C.A., Seamans M.J., Corbin W.R., Brownell K.D. Preliminary validation of the Yale Food Addiction Scale for children. Eat. Behav. 2013;14:508–512. doi: 10.1016/j.eatbeh.2013.07.002.
    1. Gearhardt A.N., Corbin W.R., Brownell K.D. Preliminary validation of the Yale Food Addiction Scale. Appetite. 2009;52:430–436. doi: 10.1016/j.appet.2008.12.003.
    1. Gearhardt A.N., Yokum S., Orr P.T., Stice E., Corbin W.R., Brownell K.D. Neural correlates of food addiction. Arch. Gen. Psychiatry. 2011;68:808–816. doi: 10.1001/archgenpsychiatry.2011.32.
    1. Warren M.W., Gold M.S. The relationship between obesity and drug use. Am. J. Psychiatry. 2007;164:1268–1269. doi: 10.1176/appi.ajp.2007.07030388.
    1. Gold M.S., Frost-Pineda K., Jacobs W.S. Overeating, binge eating, and eating disorders as addiction. Psychiatr. Ann. 2003;33:1549–1555.
    1. Zhang Y., von Deneen K.M., Tian J., Gold M.S., Liu Y. Food addiction and neuroimaging. Curr. Pharm. Des. 2011;17:1149–1157. doi: 10.2174/138161211795656855.
    1. Von Deneen K.M., Gold M.S., Liu Y. Food addiction and cues in Prader-Willi syndrome. J. Addict. Med. 2009;3:19–25. doi: 10.1097/ADM.0b013e31819a6e5f.
    1. Shapira N.A., Lessig M.C., He A.G., James G.A., Driscoll D.J., Liu Y. Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRI. J. Neurol. Neurosurg. Psychiatry. 2005;76:260–262. doi: 10.1136/jnnp.2004.039024.
    1. Dimitropoulos A., Blackford J., Walden T., Thompson T. Compulsive behavior in Prader-Willi syndrome: Examining severity in early childhood. Res. Dev. Disabil. 2006;27:190–202. doi: 10.1016/j.ridd.2005.01.002.
    1. Dimitropoulos A., Schultz R.T. Food-related neural circuitry in Prader-Willi syndrome: Response to high- versus low-calorie foods. J. Autism Dev. Disord. 2008;38:1642–1653. doi: 10.1007/s10803-008-0546-x.
    1. Holsen L.M., Zarcone J.R., Chambers R., Butler M.G., Bittel D.C., Brooks W.M., Thompson T.I., Savage C.R. Genetic subtype differences in neural circuitry of food motivation in Prader-Willi syndrome. Int. J. Obes. (Lond.) 2009;33:273–283. doi: 10.1038/ijo.2008.255.
    1. Mantoulan C., Payoux P., Diene G., Glattard M., Roge B., Molinas C., Sevely A., Zilbovicius M., Celsis P., Tauber M. PET scan perfusion imaging in the Prader-Willi syndrome: New insights into the psychiatric and social disturbances. J. Cereb. Blood Flow Metab. 2011;31:275–282. doi: 10.1038/jcbfm.2010.87.
    1. Miller J.L., James G.A., Goldstone A.P., Couch J.A., He G., Driscoll D.J., Liu Y. Enhanced activation of reward mediating prefrontal regions in response to food stimuli in Prader-Willi syndrome. J. Neurol. Neurosurg. Psychiatry. 2007;78:615–619. doi: 10.1136/jnnp.2006.099044.
    1. Ogura K., Shinohara M., Ohno K., Mori E. Frontal behavioral syndromes in Prader-Willi syndrome. Brain Dev. 2008;30:469–476. doi: 10.1016/j.braindev.2007.12.011.
    1. Holsen L.M., Zarcone J.R., Brooks W.M., Butler M.G., Thompson T.I., Ahluwalia J.S., Nollen N.L., Savage C.R. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. Obesity (Silver Spring) 2006;14:1028–1037. doi: 10.1038/oby.2006.118.
    1. Kim S.E., Jin D.K., Cho S.S., Kim J.H., Hong S.D., Paik K.H., Oh Y.J., Kim A.H., Kwon E.K., Choe Y.H. Regional cerebral glucose metabolic abnormality in Prader-Willi syndrome: A 18F-FDG PET study under sedation. J. Nucl. Med. 2006;47:1088–1092.
    1. Zhang Y., Zhao H., Qiu S., Tian J., Wen X., Miller J.L., von Deneen K.M., Zhou Z., Gold M.S., Liu Y. Altered functional brain networks in Prader-Willi syndrome. NMR Biomed. 2013;26:622–629.
    1. Liu Y., von Deneen K.M., Kobeissy F.H., Gold M.S. Food addiction and obesity: Evidence from bench to bedside. J. Psychoact. Drugs. 2010;42:133–145. doi: 10.1080/02791072.2010.10400686.
    1. Avena N.M., Rada P., Hoebel B.G. Sugar and fat bingeing have notable differences in addictive-like behavior. J. Nutr. 2009;139:623–628. doi: 10.3945/jn.108.097584.
    1. Lutter M., Nestler E.J. Homeostatic and hedonic signals interact in the regulation of food intake. J. Nutr. 2009;139:629–632. doi: 10.3945/jn.108.097618.
    1. Small D.M., Jones-Gotman M., Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage. 2003;19:1709–1715. doi: 10.1016/S1053-8119(03)00253-2.
    1. Lenard N.R., Berthoud H.R. Central and peripheral regulation of food intake and physical activity: Pathways and genes. Obesity (Silver Spring) 2008;16:S11–S22. doi: 10.1038/oby.2008.511.
    1. Myers M.G., Cowley M.A., Munzberg H. Mechanisms of leptin action and leptin resistance. Annu. Rev. Physiol. 2008;70:537–556. doi: 10.1146/annurev.physiol.70.113006.100707.
    1. Palmiter R.D. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 2007;30:375–381. doi: 10.1016/j.tins.2007.06.004.
    1. Abizaid A., Liu Z.W., Andrews Z.B., Shanabrough M., Borok E., Elsworth J.D., Roth R.H., Sleeman M.W., Picciotto M.R., Tschop M.H., et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Investig. 2006;116:3229–3239. doi: 10.1172/JCI29867.
    1. Fried S.K., Ricci M.R., Russell C.D., Laferrere B. Regulation of leptin production in humans. J. Nutr. 2000;130:3127S–3131S.
    1. Arora S., Anubhut Role of neuropeptides in appetite regulation and obesity—A review. Neuropeptides. 2006;40:375–401. doi: 10.1016/j.npep.2006.07.001.
    1. Farooqi I.S., O’Rahilly S. Recent advances in the genetics of severe childhood obesity. Arch. Dis. Child. 2000;83:31–34. doi: 10.1136/adc.83.1.31.
    1. Benoit S.C., Clegg D.J., Seeley R.J., Woods S.C. Insulin and leptin as adiposity signals. Recent Prog. Horm. Res. 2004;59:267–285. doi: 10.1210/rp.59.1.267.
    1. Farooqi I.S., Bullmore E., Keogh J., Gillard J., O’Rahilly S., Fletcher P.C. Leptin regulates striatal regions and human eating behavior. Science. 2007;317:1355. doi: 10.1126/science.1144599.
    1. Hukshorn C.J., van Dielen F.M., Buurman W.A., Westerterp-Plantenga M.S., Campfield L.A., Saris W.H. The effect of pegylated recombinant human leptin (PEG-OB) on weight loss and inflammatory status in obese subjects. Int. J. Obes. Relat. Metab. Disord. 2002;26:504–509. doi: 10.1038/sj.ijo.0801952.
    1. Figlewicz D.P., Bennett J., Evans S.B., Kaiyala K., Sipols A.J., Benoit S.C. Intraventricular insulin and leptin reverse place preference conditioned with high-fat diet in rats. Behav. Neurosci. 2004;118:479–487. doi: 10.1037/0735-7044.118.3.479.
    1. Maffeis C., Manfredi R., Trombetta M., Sordelli S., Storti M., Benuzzi T., Bonadonna R.C. Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J. Clin. Endocrinol. Metab. 2008;93:2122–2128. doi: 10.1210/jc.2007-2089.
    1. Bjorntorp P. Obesity, atherosclerosis and diabetes mellitus. Verh. Dtsch. Ges. Inn. Med. 1987;93:443–448.
    1. Rushing P.A., Lutz T.A., Seeley R.J., Woods S.C. Amylin and insulin interact to reduce food intake in rats. Horm. Metab. Res. 2000;32:62–65. doi: 10.1055/s-2007-978590.
    1. Qatanani M., Lazar M.A. Mechanisms of obesity-associated insulin resistance: Many choices on the menu. Genes Dev. 2007;21:1443–1455. doi: 10.1101/gad.1550907.
    1. Yang R., Barouch L.A. Leptin signaling and obesity: Cardiovascular consequences. Circ. Res. 2007;101:545–559. doi: 10.1161/CIRCRESAHA.107.156596.
    1. Anthony K., Reed L.J., Dunn J.T., Bingham E., Hopkins D., Marsden P.K., Amiel S.A. Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance: The cerebral basis for impaired control of food intake in metabolic syndrome? Diabetes. 2006;55:2986–2992. doi: 10.2337/db06-0376.
    1. Figlewicz D.P., Bennett J.L., Naleid A.M., Davis C., Grimm J.W. Intraventricular insulin and leptin decrease sucrose self-administration in rats. Physiol. Behav. 2006;89:611–616. doi: 10.1016/j.physbeh.2006.07.023.
    1. Korbonits M., Goldstone A.P., Gueorguiev M., Grossman A.B. Ghrelin—A hormone with multiple functions. Front. Neuroendocrinol. 2004;25:27–68. doi: 10.1016/j.yfrne.2004.03.002.
    1. Wren A.M., Small C.J., Abbott C.R., Dhillo W.S., Seal L.J., Cohen M.A., Batterham R.L., Taheri S., Stanley S.A., Ghatei M.A., et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2001;50:2540–2547. doi: 10.2337/diabetes.50.11.2540.
    1. Wren A.M., Seal L.J., Cohen M.A., Brynes A.E., Frost G.S., Murphy K.G., Dhillo W.S., Ghatei M.A., Bloom S.R. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 2001;86:5992. doi: 10.1210/jc.86.12.5992. doi: 10.1210/jcem.86.12.8111.
    1. Cummings D.E., Weigle D.S., Frayo R.S., Breen P.A., Ma M.K., Dellinger E.P., Purnell J.Q. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 2002;346:1623–1630. doi: 10.1056/NEJMoa012908.
    1. Tschop M., Smiley D.L., Heiman M.L. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–913. doi: 10.1038/35038090.
    1. Tschop M., Weyer C., Tataranni P.A., Devanarayan V., Ravussin E., Heiman M.L. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50:707–709. doi: 10.2337/diabetes.50.4.707.
    1. Shiiya T., Nakazato M., Mizuta M., Date Y., Mondal M.S., Tanaka M., Nozoe S., Hosoda H., Kangawa K., Matsukura S. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J. Clin. Endocrinol. Metab. 2002;87:240–244. doi: 10.1210/jcem.87.1.8129.
    1. Malik S., McGlone F., Bedrossian D., Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7:400–409. doi: 10.1016/j.cmet.2008.03.007.
    1. Jerlhag E., Egecioglu E., Dickson S.L., Douhan A., Svensson L., Engel J.A. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict. Biol. 2007;12:6–16. doi: 10.1111/j.1369-1600.2006.00041.x.
    1. Valassi E., Scacchi M., Cavagnini F. Neuroendocrine control of food intake. Nutr. Metab. Cardiovasc. Dis. 2008;18:158–168. doi: 10.1016/j.numecd.2007.06.004.
    1. Naslund E., Hellstrom P.M. Appetite signaling: From gut peptides and enteric nerves to brain. Physiol. Behav. 2007;92:256–262. doi: 10.1016/j.physbeh.2007.05.017.
    1. Woods S.C. Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am. J. Physiol. Gastrointest. Liver Physiol. 2004;286:G7–G13. doi: 10.1152/ajpgi.00448.2003.
    1. Alvarez B.M., Borque M., Martinez-Sarmiento J., Aparicio E., Hernandez C., Cabrerizo L., Fernandez-Represa J.A., Peptide Y.Y. Secretion in morbidly obese patients before and after vertical banded gastroplasty. Obes. Surg. 2002;12:324–327. doi: 10.1381/096089202321088084.
    1. Batterham R.L., Cohen M.A., Ellis S.M., le Roux C.W., Withers D.J., Frost G.S., Ghatei M.A., Bloom S.R. Inhibition of food intake in obese subjects by peptide YY3–36. N. Engl. J. Med. 2003;349:941–948. doi: 10.1056/NEJMoa030204.
    1. Murphy K.G., Bloom S.R. Gut hormones and the regulation of energy homeostasis. Nature. 2006;444:854–859. doi: 10.1038/nature05484.
    1. Holst J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007;87:1409–1439. doi: 10.1152/physrev.00034.2006.
    1. Tang-Christensen M., Vrang N., Larsen P.J. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int. J. Obes. Relat. Metab. Disord. 2001;25:S42–S47. doi: 10.1038/sj.ijo.0801912.
    1. Naslund E., King N., Mansten S., Adner N., Holst J.J., Gutniak M., Hellstrom P.M. Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects. Br. J. Nutr. 2004;91:439–446. doi: 10.1079/BJN20031064.
    1. Verdich C., Toubro S., Buemann B., Lysgard M.J., Juul H.J., Astrup A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—Effect of obesity and weight reduction. Int. J. Obes. Relat. Metab. Disord. 2001;25:1206–1214. doi: 10.1038/sj.ijo.0801655.
    1. Ochner C.N., Gibson C., Shanik M., Goel V., Geliebter A. Changes in neurohormonal gut peptides following bariatric surgery. Int. J. Obes. (Lond.) 2011;35:153–166. doi: 10.1038/ijo.2010.132.
    1. Liddle R.A., Goldfine I.D., Rosen M.S., Taplitz R.A., Williams J.A. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Investig. 1985;75:1144–1152. doi: 10.1172/JCI111809.
    1. Suzuki S., Ramos E.J., Goncalves C.G., Chen C., Meguid M.M. Changes in GI hormones and their effect on gastric emptying and transit times after Roux-en-Y gastric bypass in rat model. Surgery. 2005;138:283–290. doi: 10.1016/j.surg.2005.05.013.
    1. Carnell S., Gibson C., Benson L., Ochner C.N., Geliebter A. Neuroimaging and obesity: Current knowledge and future directions. Obes. Rev. 2012;13:43–56. doi: 10.1111/j.1467-789X.2011.00927.x.
    1. Rothemund Y., Preuschhof C., Bohner G., Bauknecht H.C., Klingebiel R., Flor H., Klapp B.F. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage. 2007;37:410–421. doi: 10.1016/j.neuroimage.2007.05.008.
    1. Bragulat V., Dzemidzic M., Bruno C., Cox C.A., Talavage T., Considine R.V., Kareken D.A. Food-related odor probes of brain reward circuits during hunger: A pilot FMRI study. Obesity (Silver Spring) 2010;18:1566–1571. doi: 10.1038/oby.2010.57.
    1. Gautier J.F., Chen K., Salbe A.D., Bandy D., Pratley R.E., Heiman M., Ravussin E., Reiman E.M., Tataranni P.A. Differential brain responses to satiation in obese and lean men. Diabetes. 2000;49:838–846. doi: 10.2337/diabetes.49.5.838.
    1. Soto-Montenegro M.L., Pascau J., Desco M. Response to deep brain stimulation in the lateral hypothalamic area in a rat model of obesity: In vivo assessment of brain glucose metabolism. Mol. Imaging Biol. 2014 in press.
    1. Melega W.P., Lacan G., Gorgulho A.A., Behnke E.J., de Salles A.A. Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model. PLoS One. 2012;7:e30672. doi: 10.1371/journal.pone.0030672.
    1. Whiting D.M., Tomycz N.D., Bailes J., de Jonge L., Lecoultr V., Wilent B., Alcindor D., Prostko E.R., Cheng B.C., Angle C., et al. Lateral hypothalamic area deep brain stimulation for refractory obesity: A pilot study with preliminary data on safety, body weight, and energy metabolism. J. Neurosurg. 2013;119:56–63. doi: 10.3171/2013.2.JNS12903.
    1. Orava J., Nummenmaa L., Noponen T., Viljanen T., Parkkola R., Nuutila P., Virtanen K.A. Brown adipose tissue function is accompanied by cerebral activation in lean but not in obese humans. J. Cereb. Blood Flow Metab. 2014;34:1018–1023. doi: 10.1038/jcbfm.2014.50.
    1. Lavie C.J., de Schutter A., Patel D.A., Milani R.V. Does fitness completely explain the obesity paradox? Am. Heart J. 2013;166:1–3. doi: 10.1016/j.ahj.2013.03.026.
    1. Van de Giessen E., Celik F., Schweitzer D.H., van den Brink W., Booij J. Dopamine D2/3 receptor availability and amphetamine-induced dopamine release in obesity. J. Psychopharmacol. 2014;28:866–873. doi: 10.1177/0269881114531664.
    1. Hung C.S., Wu Y.W., Huang J.Y., Hsu P.Y., Chen M.F. Evaluation of circulating adipokines and abdominal obesity as predictors of significant myocardial ischemia using gated single-photon emission computed tomography. PLoS One. 2014;9:e97710. doi: 10.1371/journal.pone.0097710.
    1. Chow B.J., Dorbala S., di Carli M.F., Merhige M.E., Williams B.A., Veledar E., Min J.K., Pencina M.J., Yam Y., Chen L., et al. Prognostic value of PET myocardial perfusion imaging in obese patients. JACC Cardiovasc. Imaging. 2014;7:278–287. doi: 10.1016/j.jcmg.2013.12.008.
    1. Ogura K., Fujii T., Abe N., Hosokai Y., Shinohara M., Fukuda H., Mori E. Regional cerebral blood flow and abnormal eating behavior in Prader-Willi syndrome. Brain Dev. 2013;35:427–434. doi: 10.1016/j.braindev.2012.07.013.
    1. Kang S., Kyung C., Park J.S., Kim S., Lee S.P., Kim M.K., Kim H.K., Kim K.R., Jeon T.J., Ahn C.W. Subclinical vascular inflammation in subjects with normal weight obesity and its association with body fat: An 18 F-FDG-PET/CT study. Cardiovasc. Diabetol. 2014;13:70. doi: 10.1186/1475-2840-13-70.
    1. Le D.S., Pannacciulli N., Chen K., Del P.A., Salbe A.D., Reiman E.M., Krakoff J. Less activation of the left dorsolateral prefrontal cortex in response to a meal: A feature of obesity. Am. J. Clin. Nutr. 2006;84:725–731.
    1. Green E., Jacobson A., Haase L., Murphy C. Reduced nucleus accumbens and caudate nucleus activation to a pleasant taste is associated with obesity in older adults. Brain Res. 2011;1386:109–117. doi: 10.1016/j.brainres.2011.02.071.
    1. Walther K., Birdsill A.C., Glisky E.L., Ryan L. Structural brain differences and cognitive functioning related to body mass index in older females. Hum. Brain Mapp. 2010;31:1052–1064. doi: 10.1002/hbm.20916.
    1. Taki Y., Kinomura S., Sato K., Inoue K., Goto R., Okada K., Uchida S., Kawashima R., Fukuda H. Relationship between body mass index and gray matter volume in 1428 healthy individuals. Obesity (Silver Spring) 2008;16:119–124. doi: 10.1038/oby.2007.4.
    1. Pannacciulli N., Del P.A., Chen K., Le D.S., Reiman E.M., Tataranni P.A. Brain abnormalities in human obesity: A voxel-based morphometric study. Neuroimage. 2006;31:1419–1425. doi: 10.1016/j.neuroimage.2006.01.047.
    1. Ward M.A., Carlsson C.M., Trivedi M.A., Sager M.A., Johnson S.C. The effect of body mass index on global brain volume in middle-aged adults: A cross sectional study. BMC Neurol. 2005;5:23. doi: 10.1186/1471-2377-5-23.
    1. Gunstad J., Paul R.H., Cohen R.A., Tate D.F., Spitznagel M.B., Grieve S., Gordon E. Relationship between body mass index and brain volume in healthy adults. Int. J. Neurosci. 2008;118:1582–1593. doi: 10.1080/00207450701392282.
    1. Raji C.A., Ho A.J., Parikshak N.N., Becker J.T., Lopez O.L., Kuller L.H., Hua X., Leow A.D., Toga A.W., Thompson P.M. Brain structure and obesity. Hum. Brain Mapp. 2010;31:353–364.
    1. Kivipelto M., Ngandu T., Fratiglioni L., Viitanen M., Kareholt I., Winblad B., Helkala E.L., Tuomilehto J., Soininen H., Nissinen A. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch. Neurol. 2005;62:1556–1560.
    1. Whitmer R.A., Gustafson D.R., Barrett-Connor E., Haan M.N., Gunderson E.P., Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71:1057–1064. doi: 10.1212/01.wnl.0000306313.89165.ef.
    1. Dahl A., Hassing L.B., Fransson E., Berg S., Gatz M., Reynolds C.A., Pedersen N.L. Being overweight in midlife is associated with lower cognitive ability and steeper cognitive decline in late life. J. Gerontol. A Biol. Sci. Med. Sci. 2010;65:57–62. doi: 10.1093/gerona/glp035.
    1. Lim D.C., Veasey S.C. Neural injury in sleep apnea. Curr. Neurol. Neurosci. Rep. 2010;10:47–52. doi: 10.1007/s11910-009-0078-6.
    1. Bruce-Keller A.J., Keller J.N., Morrison C.D. Obesity and vulnerability of the CNS. Biochim. Biophys. Acta. 2009;1792:395–400. doi: 10.1016/j.bbadis.2008.10.004.
    1. Pistell P.J., Morrison C.D., Gupta S., Knight A.G., Keller J.N., Ingram D.K., Bruce-Keller A.J. Cognitive impairment following high fat diet consumption is associated with brain inflammation. J. Neuroimmunol. 2010;219:25–32. doi: 10.1016/j.jneuroim.2009.11.010.
    1. Widya R.L., de Roos A., Trompet S., de Craen A.J., Westendorp R.G., Smit J.W., van Buchem M.A., van der Grond J. Increased amygdalar and hippocampal volumes in elderly obese individuals with or at risk of cardiovascular disease. Am. J. Clin. Nutr. 2011;93:1190–1195. doi: 10.3945/ajcn.110.006304.
    1. Purnell J.Q., Lahna D.L., Samuels M.H., Rooney W.D., Hoffman W.F. Loss of pons-to-hypothalamic white matter tracks in brainstem obesity. Int. J. Obes. (Lond.) 2014 in press.
    1. Karlsson H.K., Tuulari J.J., Hirvonen J., Lepomaki V., Parkkola R., Hiltunen J., Hannukainen J.C., Soinio M., Pham T., Salminen P., et al. Obesity is associated with white matter atrophy: A combined diffusion tensor imaging and voxel-based morphometric study. Obesity (Silver Spring) 2013;21:2530–2537. doi: 10.1002/oby.20386.
    1. Volkow N.D., Wang G.J., Fowler J.S., Telang F. Overlapping neuronal circuits in addiction and obesity: Evidence of systems pathology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008;363:3191–3200. doi: 10.1098/rstb.2008.0107.
    1. Volkow N.D., Wang G.J., Baler R.D. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cogn. Sci. 2011;15:37–46. doi: 10.1016/j.tics.2010.11.001.
    1. Steele K.E., Prokopowicz G.P., Schweitzer M.A., Magunsuon T.H., Lidor A.O., Kuwabawa H., Kumar A., Brasic J., Wong D.F. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes. Surg. 2010;20:369–374. doi: 10.1007/s11695-009-0015-4.
    1. Salamone J.D., Cousins M.S., Snyder B.J. Behavioral functions of nucleus accumbens dopamine: Empirical and conceptual problems with the anhedonia hypothesis. Neurosci. Biobehav. Rev. 1997;21:341–359. doi: 10.1016/S0149-7634(96)00017-6.
    1. Wise R.A., Bozarth M.A. Brain reward circuitry: Four circuit elements “wired” in apparent series. Brain Res. Bull. 1984;12:203–208. doi: 10.1016/0361-9230(84)90190-4.
    1. Bassareo V., di Chiara G. Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur. J. Neurosci. 1999;11:4389–4397. doi: 10.1046/j.1460-9568.1999.00843.x.
    1. Volkow N.D., Wang G.J., Maynard L., Jayne M., Fowler J.S., Zhu W., Logan J., Gatley S.J., Ding Y.S., Wong C., et al. Brain dopamine is associated with eating behaviors in humans. Int. J. Eat. Disord. 2003;33:136–142. doi: 10.1002/eat.10118.
    1. Schwartz M.W., Woods S.C., Porte D.J., Seeley R.J., Baskin D.G. Central nervous system control of food intake. Nature. 2000;404:661–671.
    1. Wang G.J., Volkow N.D., Felder C., Fowler J.S., Levy A.V., Pappas N.R., Wong C.T., Zhu W., Netusil N. Enhanced resting activity of the oral somatosensory cortex in obese subjects. Neuroreport. 2002;13:1151–1155. doi: 10.1097/00001756-200207020-00016.
    1. Huttunen J., Kahkonen S., Kaakkola S., Ahveninen J., Pekkonen E. Effects of an acute D2-dopaminergic blockade on the somatosensory cortical responses in healthy humans: Evidence from evoked magnetic fields. Neuroreport. 2003;14:1609–1612. doi: 10.1097/00001756-200308260-00013.
    1. Rossini P.M., Bassetti M.A., Pasqualetti P. Median nerve somatosensory evoked potentials. Apomorphine-induced transient potentiation of frontal components in Parkinson’s disease and in parkinsonism. Electroencephalogr. Clin. Neurophysiol. 1995;96:236–247. doi: 10.1016/0168-5597(94)00292-M.
    1. Chen Y.I., Ren J., Wang F.N., Xu H., Mandeville J.B., Kim Y., Rosen B.R., Jenkins B.G., Hui K.K., Kwong K.K. Inhibition of stimulated dopamine release and hemodynamic response in the brain through electrical stimulation of rat forepaw. Neurosci. Lett. 2008;431:231–235. doi: 10.1016/j.neulet.2007.11.063.
    1. Wise R.A. Role of brain dopamine in food reward and reinforcement. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006;361:1149–1158. doi: 10.1098/rstb.2006.1854.
    1. McFarland K., Ettenberg A. Haloperidol does not affect motivational processes in an operant runway model of food-seeking behavior. Behav. Neurosci. 1998;112:630–635. doi: 10.1037/0735-7044.112.3.630.
    1. Wang G.J., Volkow N.D., Logan J., Pappas N.R., Wong C.T., Zhu W., Netusil N., Fowler J.S. Brain dopamine and obesity. Lancet. 2001;357:354–357. doi: 10.1016/S0140-6736(00)03643-6.
    1. Haltia L.T., Rinne J.O., Merisaari H., Maguire R.P., Savontaus E., Helin S., Nagren K., Kaasinen V. Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse. 2007;61:748–756. doi: 10.1002/syn.20418.
    1. Restaino L., Frampton E.W., Turner K.M., Allison D.R. A chromogenic plating medium for isolating Escherichia coli O157:H7 from beef. Lett. Appl. Microbiol. 1999;29:26–30. doi: 10.1046/j.1365-2672.1999.00569.x.
    1. Rolls E.T. The functions of the orbitofrontal cortex. Brain Cogn. 2004;55:11–29. doi: 10.1016/S0278-2626(03)00277-X.
    1. Szalay C., Aradi M., Schwarcz A., Orsi G., Perlaki G., Nemeth L., Hanna S., Takacs G., Szabo I., Bajnok L., et al. Gustatory perception alterations in obesity: An fMRI study. Brain Res. 2012;1473:131–140. doi: 10.1016/j.brainres.2012.07.051.
    1. Volkow N.D., Fowler J.S. Addiction, a disease of compulsion and drive: Involvement of the orbitofrontal cortex. Cereb Cortex. 2000;10:318–325. doi: 10.1093/cercor/10.3.318.
    1. Volkow N.D., Fowler J.S., Wang G.J. The addicted human brain: Insights from imaging studies. J. Clin. Investig. 2003;111:1444–1451. doi: 10.1172/JCI18533.
    1. White N.M. Addictive drugs as reinforcers: Multiple partial actions on memory systems. Addiction. 1996;91:921–949. doi: 10.1111/j.1360-0443.1996.tb03586.x.
    1. Healy S.D., de Kort S.R., Clayton N.S. The hippocampus, spatial memory and food hoarding: A puzzle revisited. Trends Ecol. Evol. 2005;20:17–22. doi: 10.1016/j.tree.2004.10.006.
    1. Breiter H.C., Gollub R.L., Weisskoff R.M., Kennedy D.N., Makris N., Berke J.D., Goodman J.M., Kantor H.L., Gastfriend D.R., Riorden J.P., et al. Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19:591–611. doi: 10.1016/S0896-6273(00)80374-8.
    1. Stein E.A., Pankiewicz J., Harsch H.H., Cho J.K., Fuller S.A., Hoffmann R.G., Hawkins M., Rao S.M., Bandettini P.A., Bloom A.S. Nicotine-induced limbic cortical activation in the human brain: A functional MRI study. Am. J. Psychiatry. 1998;155:1009–1015.
    1. Grant S., London E.D., Newlin D.B., Villemagne V.L., Liu X., Contoreggi C., Phillips R.L., Kimes A.S., Margolin A. Activation of memory circuits during cue-elicited cocaine craving. Proc. Natl. Acad. Sci. USA. 1996;93:12040–12045. doi: 10.1073/pnas.93.21.12040.
    1. Childress A.R., Mozley P.D., McElgin W., Fitzgerald J., Reivich M., O’Brien C.P. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry. 1999;156:11–18.
    1. Kilts C.D., Schweitzer J.B., Quinn C.K., Gross R.E., Faber T.L., Muhammad F., Ely T.D., Hoffman J.M., Drexler K.P. Neural activity related to drug craving in cocaine addiction. Arch. Gen. Psychiatry. 2001;58:334–341. doi: 10.1001/archpsyc.58.4.334.
    1. Ito R., Dalley J.W., Robbins T.W., Everitt B.J. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 2002;22:6247–6253.
    1. Letchworth S.R., Nader M.A., Smith H.R., Friedman D.P., Porrino L.J. Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J. Neurosci. 2001;21:2799–2807.
    1. Knight R.T., Staines W.R., Swick D., Chao L.L. Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol. (Amst.) 1999;101:159–178. doi: 10.1016/S0001-6918(99)00004-9.
    1. Hollmann M., Hellrung L., Pleger B., Schlogl H., Kabisch S., Stumvoll M., Villringer A., Horstmann A. Neural correlates of the volitional regulation of the desire for food. Int. J. Obes. (Lond.) 2012;36:648–655. doi: 10.1038/ijo.2011.125.
    1. Hare T.A., Camerer C.F., Rangel A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 2009;324:646–648. doi: 10.1126/science.1168450.
    1. Holsen L.M., Savage C.R., Martin L.E., Bruce A.S., Lepping R.J., Ko E., Brooks W.M., Butler M.G., Zarcone J.R., Goldstein J.M. Importance of reward and prefrontal circuitry in hunger and satiety: Prader-Willi syndrome vs. simple obesity. Int. J. Obes. (Lond.) 2012;36:638–647. doi: 10.1038/ijo.2011.204.
    1. Goldstein R.Z., Volkow N.D. Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry. 2002;159:1642–1652. doi: 10.1176/appi.ajp.159.10.1642.
    1. Royall D.R., Lauterbach E.C., Cummings J.L., Reeve A., Rummans T.A., Kaufer D.I., LaFrance W.J., Coffey C.E. Executive control function: A review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. J. Neuropsychiatry Clin. Neurosci. 2002;14:377–405. doi: 10.1176/appi.neuropsych.14.4.377.
    1. Bechara A., Damasio H. Decision-making and addiction (part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia. 2002;40:1675–1689. doi: 10.1016/S0028-3932(02)00015-5.
    1. Ernst M., Grant S.J., London E.D., Contoreggi C.S., Kimes A.S., Spurgeon L. Decision making in adolescents with behavior disorders and adults with substance abuse. Am. J. Psychiatry. 2003;160:33–40. doi: 10.1176/appi.ajp.160.1.33.
    1. Robinson T.E., Gorny G., Mitton E., Kolb B. Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse. 2001;39:257–266. doi: 10.1002/1098-2396(20010301)39:3<257::AID-SYN1007>;2-1.
    1. Ernst M., Matochik J.A., Heishman S.J., van Horn J.D., Jons P.H., Henningfield J.E., London E.D. Effect of nicotine on brain activation during performance of a working memory task. Proc. Natl. Acad. Sci. USA. 2001;98:4728–4733. doi: 10.1073/pnas.061369098.
    1. Rosenkranz J.A., Grace A.A. Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J. Neurosci. 2001;21:4090–4103.
    1. Lau D.C., Douketis J.D., Morrison K.M., Hramiak I.M., Sharma A.M., Ur E. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children (summary) CMAJ. 2007;176:S1–S13. doi: 10.1503/cmaj.061409.
    1. Li Z., Hong K., Yip I., Huerta S., Bowerman S., Walker J., Wang H., Elashoff R., Go V.L., Heber D. Body weight loss with phentermine alone versus phentermine and fenfluramine with very-low-calorie diet in an outpatient obesity management program: A retrospective study. Curr. Ther. Res. Clin. Exp. 2003;64:447–460. doi: 10.1016/S0011-393X(03)00126-7.
    1. Munro I.A., Bore M.R., Munro D., Garg M.L. Using personality as a predictor of diet induced weight loss and weight management. Int. J. Behav. Nutr. Phys. Act. 2011;8:129. doi: 10.1186/1479-5868-8-129.
    1. Tate D.F., Jeffery R.W., Sherwood N.E., Wing R.R. Long-term weight losses associated with prescription of higher physical activity goals. Are higher levels of physical activity protective against weight regain? Am. J. Clin. Nutr. 2007;85:954–959.
    1. Hansen D., Dendale P., Berger J., van Loon L.J., Meeusen R. The effects of exercise training on fat-mass loss in obese patients during energy intake restriction. Sports Med. 2007;37:31–46. doi: 10.2165/00007256-200737010-00003.
    1. Sahlin K., Sallstedt E.K., Bishop D., Tonkonogi M. Turning down lipid oxidation during heavy exercise—What is the mechanism? J. Physiol. Pharmacol. 2008;59:19–30.
    1. Huang S.C., Freitas T.C., Amiel E., Everts B., Pearce E.L., Lok J.B., Pearce E.J. Fatty acid oxidation is essential for egg production by the parasitic flatworm Schistosoma mansoni. PLoS Pathog. 2012;8:e1002996. doi: 10.1371/journal.ppat.1002996.
    1. Haskell W.L., Lee I.M., Pate R.R., Powell K.E., Blair S.N., Franklin B.A., Macera C.A., Heath G.W., Thompson P.D., Bauman A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007;39:1423–1434. doi: 10.1249/mss.0b013e3180616b27.
    1. Tuah N.A., Amiel C., Qureshi S., Car J., Kaur B., Majeed A. Transtheoretical model for dietary and physical exercise modification in weight loss management for overweight and obese adults. Cochrane Database Syst. Rev. 2011;10:CD008066. doi: 10.1002/14651858.CD008066.pub2.
    1. Mastellos N., Gunn L.H., Felix L.M., Car J., Majeed A. Transtheoretical model stages of change for dietary and physical exercise modification in weight loss management for overweight and obese adults. Cochrane Database Syst. Rev. 2014;2:CD008066. doi: 10.1002/14651858.CD008066.pub3.
    1. Blackburn G.L., Walker W.A. Science-based solutions to obesity: What are the roles of academia, government, industry, and health care? Am. J. Clin. Nutr. 2005;82:207S–210S.
    1. Thangaratinam S., Rogozinska E., Jolly K., Glinkowski S., Roseboom T., Tomlinson J.W., Kunz R., Mol B.W., Coomarasamy A., Khan K.S. Effects of interventions in pregnancy on maternal weight and obstetric outcomes: Meta-analysis of randomised evidence. BMJ. 2012;344:e2088. doi: 10.1136/bmj.e2088.
    1. Siebenhofer A., Jeitler K., Horvath K., Berghold A., Siering U., Semlitsch T. Long-term effects of weight-reducing drugs in hypertensive patients. Cochrane Database Syst. Rev. 2013;3:CD007654. doi: 10.1002/14651858.CD007654.pub2.
    1. O’Neil P.M., Smith S.R., Weissman N.J., Fidler M.C., Sanchez M., Zhang J., Raether B., Anderson C.M., Shanahan W.R. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: The BLOOM-DM study. Obesity (Silver Spring) 2012;20:1426–1436. doi: 10.1038/oby.2012.66.
    1. Sinnayah P., Jobst E.E., Rathner J.A., Caldera-Siu A.D., Tonelli-Lemos L., Eusterbrock A.J., Enriori P.J., Pothos E.N., Grove K.L., Cowley M.A. Feeding induced by cannabinoids is mediated independently of the melanocortin system. PLoS One. 2008;3:e2202. doi: 10.1371/journal.pone.0002202.
    1. Ochner C.N., Gibson C., Carnell S., Dambkowski C., Geliebter A. The neurohormonal regulation of energy intake in relation to bariatric surgery for obesity. Physiol. Behav. 2010;100:549–559. doi: 10.1016/j.physbeh.2010.04.032.
    1. Samuel I., Mason E.E., Renquist K.E., Huang Y.H., Zimmerman M.B., Jamal M. Bariatric surgery trends: An 18-year report from the International Bariatric Surgery Registry. Am. J. Surg. 2006;192:657–662. doi: 10.1016/j.amjsurg.2006.07.006.
    1. Paluszkiewicz R., Kalinowski P., Wroblewski T., Bartoszewicz Z., Bialobrzeska-Paluszkiewicz J., Ziarkiewicz-Wroblewska B., Remiszewski P., Grodzicki M., Krawczyk M. Prospective randomized clinical trial of laparoscopic sleeve gastrectomy versus open Roux-en-Y gastric bypass for the management of patients with morbid obesity. Wideochir. Inne Tech. Malo Inwazyjne. 2012;7:225–232.
    1. Ochner C.N., Kwok Y., Conceicao E., Pantazatos S.P., Puma L.M., Carnell S., Teixeira J., Hirsch J., Geliebter A. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann. Surg. 2011;253:502–507. doi: 10.1097/SLA.0b013e318203a289.
    1. Doucet E., Cameron J. Appetite control after weight loss: What is the role of bloodborne peptides? Appl. Physiol. Nutr. Metab. 2007;32:523–532. doi: 10.1139/H07-019.
    1. Cohen M.A., Ellis S.M., le Roux C.W., Batterham R.L., Park A., Patterson M., Frost G.S., Ghatei M.A., Bloom S.R. Oxyntomodulin suppresses appetite and reduces food intake in humans. J. Clin. Endocrinol. Metab. 2003;88:4696–4701. doi: 10.1210/jc.2003-030421.
    1. Bose M., Teixeira J., Olivan B., Bawa B., Arias S., Machineni S., Pi-Sunyer F.X., Scherer P.E., Laferrere B. Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. J. Diabetes. 2010;2:47–55. doi: 10.1111/j.1753-0407.2009.00064.x.
    1. Rao R.S. Bariatric surgery and the central nervous system. Obes. Surg. 2012;22:967–978. doi: 10.1007/s11695-012-0649-5.
    1. Halmi K.A., Mason E., Falk J.R., Stunkard A. Appetitive behavior after gastric bypass for obesity. Int. J. Obes. 1981;5:457–464.
    1. Thomas J.R., Marcus E. High and low fat food selection with reported frequency intolerance following Roux-en-Y gastric bypass. Obes. Surg. 2008;18:282–287. doi: 10.1007/s11695-007-9336-3.
    1. Olbers T., Bjorkman S., Lindroos A., Maleckas A., Lonn L., Sjostrom L., Lonroth H. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: A randomized clinical trial. Ann. Surg. 2006;244:715–722. doi: 10.1097/01.sla.0000218085.25902.f8.
    1. Kenler H.A., Brolin R.E., Cody R.P. Changes in eating behavior after horizontal gastroplasty and Roux-en-Y gastric bypass. Am. J. Clin. Nutr. 1990;52:87–92.
    1. Thirlby R.C., Bahiraei F., Randall J., Drewnoski A. Effect of Roux-en-Y gastric bypass on satiety and food likes: The role of genetics. J. Gastrointest. Surg. 2006;10:270–277. doi: 10.1016/j.gassur.2005.06.012.
    1. Brown E.K., Settle E.A., van Rij A.M. Food intake patterns of gastric bypass patients. J. Am. Diet. Assoc. 1982;80:437–443.
    1. Bueter M., Miras A.D., Chichger H., Fenske W., Ghatei M.A., Bloom S.R., Unwin R.J., Lutz T.A., Spector A.C., le Roux C.W. Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol. Behav. 2011;104:709–721. doi: 10.1016/j.physbeh.2011.07.025.
    1. Sjostrom L., Peltonen M., Jacobson P., Sjostrom C.D., Karason K., Wedel H., Ahlin S., Anveden A., Bengtsson C., Bergmark G., et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65. doi: 10.1001/jama.2011.1914.
    1. Dunn J.P., Cowan R.L., Volkow N.D., Feurer I.D., Li R., Williams D.B., Kessler R.M., Abumrad N.N. Decreased dopamine type 2 receptor availability after bariatric surgery: Preliminary findings. Brain Res. 2010;1350:123–130. doi: 10.1016/j.brainres.2010.03.064.
    1. Scholtz S., Miras A.D., Chhina N., Prechtl C.G., Sleeth M.L., Daud N.M., Ismail N.A., Durighel G., Ahmed A.R., Olbers T., et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63:891–902. doi: 10.1136/gutjnl-2013-305008.
    1. DiBaise J.K., Frank D.N., Mathur R. Impact of the gut microbiota on the development of obesity: Current concepts. Am. J. Gastroenterol. 2012;5:22–27. doi: 10.1038/ajgsup.2012.5.
    1. Aroniadis O.C., Brandt L.J. Fecal microbiota transplantation: Past, present and future. Curr. Opin. Gastroenterol. 2013;29:79–84. doi: 10.1097/MOG.0b013e32835a4b3e.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.
    1. Backhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101.
    1. Van Reenen C.A., Dicks L.M. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: What are the possibilities? A review. Arch. Microbiol. 2011;193:157–168. doi: 10.1007/s00203-010-0668-3.

Source: PubMed

Подписаться