Visceral pain from colon and rectum: the mechanotransduction and biomechanics

Bin Feng, Tiantian Guo, Bin Feng, Tiantian Guo

Abstract

Visceral pain is the cardinal symptom of functional gastrointestinal (GI) disorders such as the irritable bowel syndrome (IBS) and the leading cause of patients' visit to gastroenterologists. IBS-related visceral pain usually arises from the distal colon and rectum (colorectum), an intraluminal environment that differs greatly from environment outside the body in chemical, biological, thermal, and mechanical conditions. Accordingly, visceral pain is different from cutaneous pain in several key psychophysical characteristics, which likely underlies the unsatisfactory management of visceral pain by drugs developed for other types of pain. Colorectal visceral pain is usually elicited from mechanical distension/stretch, rather than from heating, cutting, pinching, or piercing that usually evoke pain from the skin. Thus, mechanotransduction, i.e., the encoding of colorectal mechanical stimuli by sensory afferents, is crucial to the underlying mechanisms of GI-related visceral pain. This review will focus on colorectal mechanotransduction, the process of converting colorectal mechanical stimuli into trains of action potentials by the sensory afferents to inform the central nervous system (CNS). We will summarize neurophysiological studies on afferent encoding of colorectal mechanical stimuli, highlight recent advances in our understanding of colorectal biomechanics that plays critical roles in mechanotransduction, and review studies on mechano-sensitive ion channels in colorectal afferents. This review calls for focused attention on targeting colorectal mechanotransduction as a new strategy for managing visceral pain, which can also have an added benefit of limited CNS side effects, because mechanotransduction arises from peripheral organs.

Keywords: Colorectum; Irritable bowel syndrome; Mechano-sensitive ion channel; Mechanotransduction; Visceral afferents.

Conflict of interest statement

Conflict of interest: The authors claim no conflict of interests.

Figures

Figure 1.
Figure 1.
Extrinsic afferents in the spinal innervation of mouse colon and rectum (colorectum). A) The lumbar splanchnic (LSN) and pelvic nerves (PN) dominate the innervation of the colonic and rectal regions, respectively. B) Afferent endings are differentially distributed in the colorectum between the LSN and PN innervations. Notice that proximal colonic regions out of the mesenteric zone have no spinal afferent innervations. C) Three mechanical stimuli are applied to the afferent receptive fields in the colorectum to evoke responses revealed by single-unit electrophysiological recordings. D) Colorectal afferents are categorized into 5 classes based on their response profiles to the three mechanical stimuli. Mesenteric afferents have endings not in the colorectum but in the mesentery. MPG: major pelvic ganglion; IMG: inferior mesenteric ganglion; c.stretch: circumferential stretch; HTh.prob: high-threshold probing;
Figure 2.
Figure 2.
Mechanical heterogeneity of mouse colorectum. A) The tubular colorectum is assigned with a cylindrical coordinate system. Heterogeneous macroscale mechanical properties are reported along the axial, radial and circumferential directions. B) The collagen fibers that subserve microscale soft tissue biomechanics were measured by second-harmonic generation (SHG) microscopy through the thickness of the colorectal wall. The collagen network in the submucosa is the load-bearing structure of the colorectum. C. muscle: circular muscular layer; L. muscle: longitudinal muscular layer; submucosa (LF): submucosa under load-free condition; submucosa (ND): submucosal under noxious distension.

References

    1. Alcaino C, Knutson K, Treichel A, Yildiz G, Strege P, Linden D, Li J, Leiter A, Szurszewski J, Farrugia G, Beyder A (2018) A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc Natl Acad Sci USA 115 (32):E7632–E7641
    1. Andrews PLR, Sanger GJ (2002) Abdominal vagal afferent neurones: an important target for the treatment of gastrointestinal dysfunction. Current Opinion in Pharmacology 2 (6):650–656. doi:10.1016/S1471-4892(02)00227-8
    1. Annahazi A, Gecse K, Dabek M, it-Belgnaoui A, Rosztoczy A, Roka R, Molnar T, Theodorou V, Wittmann T, Bueno L, Eutamene H (2009) Fecal proteases from diarrheic-IBS and ulcerative colitis patients exert opposite effect on visceral sensitivity in mice. Pain 144 (1–2):209–217
    1. Bagriantsev SN, Gracheva EO, Gallagher PG (2014) Piezo proteins: regulators of mechanosensation and other cellular processes. Journal of biological Chemistry 289 (46):31673–31681
    1. Ben-Shahar Y (2011) Sensory functions for degenerin/epithelial sodium channels (DEG/ENaC). Advances in genetics 76:1–26. doi:10.1016/B978-0-12-386481-9.00001-8
    1. Bernstein CN, Niazi N, Robert M, Mertz H, Kodner A, Munakata J, Naliboff B, Mayer EA (1996) Rectal afferent function in patients with inflammatory and functional intestinal disorders. Pain 66 (2–3):151–161
    1. Birk JW, Tadros M, Moezardalan K, Nadyarnykh O, Forouhar F, Anderson J, Campagnola P (2014) Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from normal colonic mucosa. Dig Dis Sci 59 (7):1529–1534. doi:10.1007/s10620-014-3121-7
    1. Bouin M, Delvaux M, Blanc C, Lagier E, Delisle MB, Fioramonti J, Bueno L, Frexinos J (2001) Intrarectal injection of glycerol induces hypersensitivity to rectal distension in healthy subjects without modifying rectal compliance. EurJ Gastroenterol Hepatol 13 (5):573–580
    1. Brierley SM (2010) Molecular basis of mechanosensitivity. Autonomic Neuroscience 153 (1):58–68. doi:10.1016/j.autneu.2009.07.017
    1. Brierley SM, Carter R, Jones W III, Xu L, Robinson DR, Hicks GA, Gebhart GF, Blackshaw LA (2005a) Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. Journal of Physiology 567 (Pt 1):267–281
    1. Brierley SM, Hibberd TJ, Spencer NJ (2018) Spinal Afferent Innervation of the Colon and Rectum. Frontiers in Cellular Neuroscience 12 (467). doi:10.3389/fncel.2018.00467
    1. Brierley SM, Jones RC 3rd, Gebhart GF, Blackshaw LA (2004) Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127 (1):166–178. doi:10.1053/j.gastro.2004.04.008
    1. Brierley SM, Jones RC III, Xu L, Gebhart GF, Blackshaw LA (2005b) Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterol Motil 17 (6):854–862
    1. Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, Holtmann G, Liedtke W, Blackshaw LA (2008) Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134 (7):2059–2069
    1. Brown AL, Fernandez-Illescas SM, Liao Z, Goodman MB (2007) Gain-of-function mutations in the MEC-4 DEG/ENaC sensory mechanotransduction channel alter gating and drug blockade. The Journal of general physiology 129 (2):161–173
    1. Bulmer DC, Roza C Visceral Pain In: The Oxford Handbook of the Neurobiology of Pain.
    1. Burgess PT, Perl E (1973) Cutaneous mechanoreceptors and nociceptors In: Somatosensory system. Springer, pp 29–78
    1. Carniel E, Gramigna V, Fontanella C, Frigo A, Stefanini C, Rubini A, Natali A (2014a) Characterization of the anisotropic mechanical behaviour of colonic tissues: experimental activity and constitutive formulation. Experimental physiology 99 (5):759–771
    1. Carniel EL, Gramigna V, Fontanella CG, Stefanini C, Natali AN (2014b) Constitutive formulations for the mechanical investigation of colonic tissues. J Biomed Mater Res A 102 (5):1243–1254. doi:10.1002/jbm.a.34787
    1. Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135 (3):937–946, 946
    1. Cenac N, Bautzova T, Le Faouder P, Veldhuis NA, Poole DP, Rolland C, Bertrand J, Liedtke W, Dubourdeau M, Bertrand-Michel J, Zecchi L, Stanghellini V, Bunnett NW, Barbara G, Vergnolle N (2015) Quantification and Potential Functions of Endogenous Agonists of Transient Receptor Potential Channels in Patients With Irritable Bowel Syndrome. Gastroenterology 149 (2):433–444.e437. doi:10.1053/j.gastro.2015.04.011
    1. Cervero F (1994) Sensory innervation of the viscera: peripheral basis of visceral pain. Physiological Reviews 74 (1):95–138. doi:10.1152/physrev.1994.74.1.95
    1. Cervero F, Laird JM (2004) Understanding the signaling and transmission of visceral nociceptive events. J Neurobiol 61 (1):45–54. doi:10.1002/neu.20084
    1. Cervero F, Laird JMA (1999) Visceral pain. The Lancet 353 (9170):2145–2148. doi:10.1016/S0140-6736(99)01306-9
    1. Chang L, Munakata J, Mayer EA, Schmulson MJ, Johnson TD, Bernstein CN, Saba L, Naliboff B, Anton PA, Matin K (2000) Perceptual responses in patients with inflammatory and functional bowel disease. Gut 47 (4):497–505
    1. Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nature protocols 7 (4):654–669. doi:10.1038/nprot.2012.009
    1. Cheng Y, Jiang B, Chen C (2018) Acid-sensing ion channels: dual function proteins for chemo-sensing and mechano-sensing. J Biomed Sci 25 (1):46.
    1. Christianson JA, Traub RJ, Davis BM (2006) Differences in spinal distribution and neurochemical phenotype of colonic afferents in mouse and rat. J Comp Neurol 494 (2):246–259
    1. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels. Science
    1. Cueva JG, Mulholland A, Goodman MB (2007) Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. J Neurosci 27 (51):14089–14098. doi:10.1523/jneurosci.4179-07.2007
    1. Darby W, Grace M, Simpson K, Woodman O, McIntyre P (2018) A Functional Kinase Short Interfering Ribonucleic Acid Screen Using Protease-Activated Receptor 2-Dependent Opening of Transient Receptor Potential Vanilloid-4. Assay Drug Dev Technol 16 (1):15–26
    1. Falt P, Šmajstrla V, Fojtík P, Tvrdík J, Urban O (2013) Cool water vs warm water immersion for minimal sedation colonoscopy: a double-blind randomized trial. Colorectal Disease 15 (10):e612–e617. doi:10.1111/codi.12336
    1. Fels B, Nielsen N, Schwab A (2016) Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. Eur Biophys J 45 (7):657–670
    1. Feng B, Brumovsky PR, Gebhart GF (2010) Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum. Am J Physiol Gastrointest Liver Physiol 298 (3):G402–409. doi:10.1152/ajpgi.00487.2009
    1. Feng B, Gebhart GF (2011) Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am J Physiol Gastrointest Liver Physiol 300 (1):G170–180. doi:10.1152/ajpgi.00406.2010
    1. Feng B, Gebhart GF (2015) In vitro functional characterization of mouse colorectal afferent endings. J Vis Exp (95):52310. doi:10.3791/52310
    1. Feng B, Joyce SC, Gebhart GF (2016) Optogenetic activation of mechanically insensitive afferents in mouse colorectum reveals chemosensitivity. Am J Physiol Gastrointest Liver Physiol 310 (10):G790–798. doi:10.1152/ajpgi.00430.2015
    1. Feng B, La JH, Schwartz ES, Gebhart GF (2012a) Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 302 (10):G1085–1098. doi:10.1152/ajpgi.00542.2011
    1. Feng B, La JH, Schwartz ES, Tanaka T, McMurray TP, Gebhart GF (2012b) Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity. Am J Physiol Gastrointest Liver Physiol 302 (7):G676–683. doi:10.1152/ajpgi.00490.2011
    1. Feng B, La JH, Tanaka T, Schwartz ES, McMurray TP, Gebhart GF (2012c) Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice. Am J Physiol Gastrointest Liver Physiol 303 (7):G817–824. doi:10.1152/ajpgi.00257.2012
    1. Feng B, Maier F, Siri S, Pierce DM (2019) Quantifying the Collagen-Network Morphology in Mouse Distal Colon and Rectum. Paper presented at the Proceedings of the Biomedical Engineering Society 2019 Annual Fall Meeting, Philadelphia, Oct 16–19
    1. Feng B, Zhu Y, La JH, Wills ZP, Gebhart GF (2015) Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings. J Neurophysiol 113 (7):2618–2634. doi:10.1152/jn.00717.2014
    1. Frokjaer JB, Andersen SD, Drewes AM, Gregersen H (2006) Ultrasound-determined geometric and biomechanical properties of the human duodenum. Dig Dis Sci 51 (9):1662–1669. doi:10.1007/s10620-005-9015-y
    1. Furness JB (2006) Novel gut afferents: Intrinsic afferent neurons and intestinofugal neurons. AutonNeurosci 125 (1–2):81–85
    1. Gabella G (1983) The collagen fibrils in the collapsed and the chronically stretched intestinal wall. Journal of ultrastructure research 85 (2):127–138
    1. Garrison S, Dietrich A, Stucky C (2012) TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 107 (3):913–922
    1. Gebhart GF (2000) Visceral pain-peripheral sensitisation. [Review] [6 refs]. Gut 47 Suppl 4:iv54–iv55
    1. Gebhart GF, Feng B (2013) Sensitization of Visceral Nociceptors In: Gebhart GF, Schmidt RF (eds) Encyclopedia of Pain. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 3464–3468. doi:10.1007/978-3-642-28753-4_3937
    1. Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16 (11):1248–1257. doi:10.1038/nm.2235
    1. Goodman MB, Schwarz EM (2003) Transducing touch in Caenorhabditis elegans. Annual review of physiology 65 (1):429–452
    1. Grace M, Lieu T, Darby B, Abogadie F, Veldhuis N, Bunnett N, McIntyre P (2014) The tyrosine kinase inhibitor bafetinib inhibits PAR2-induced activation of TRPV4 channels in vitro and pain in vivo. Br J Pharmacol 171 (16):3881–3894
    1. Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578 (Pt 3):715–733
    1. Greenwald HP, Bonica JJ, Bergner M (1987) The prevalence of pain in four cancers. Cancer 60 (10):2563–2569. doi:10.1002/1097-0142(19871115)60:10<2563::aid-cncr2820601036>;2-l
    1. Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomechanics and Modeling in Mechanobiology 6 (3):163–175. doi:10.1007/s10237-006-0049-7
    1. Herrity AN, Rau KK, Petruska JC, Stirling DP, Hubscher CH (2014) Identification of bladder and colon afferents in the nodose ganglia of male rats. Journal of Comparative Neurology 522 (16):3667–3682
    1. Ho TC, Horn NA, Huynh T, Kelava L, Lansman JB (2012) Evidence TRPV4 contributes to mechanosensitive ion channels in mouse skeletal muscle fibers. Channels (Austin) 6 (4)
    1. Holzer P (2015) Acid-sensing ion channels in gastrointestinal function. Neuropharmacology 94:72–79
    1. Hughes P, Brierley S, Young R, Blackshaw L (2007) Localization and comparative analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. J Comp Neurol 500 (5):863–875
    1. Hughes PA, Brierley SM, Martin CM, Brookes SJ, Linden DR, Blackshaw LA (2009) Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Gut 58 (10):1333–1341. doi:10.1136/gut.2008.170811
    1. Hughes PA, Harrington AM, Castro J, Liebregts T, Adam B, Grasby DJ, Isaacs NJ, Maldeniya L, Martin CM, Persson J, Andrews JM, Holtmann G, Blackshaw LA, Brierley SM (2013) Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut 62 (10):1456–1465. doi:10.1136/gutjnl-2011-301856
    1. Hulmes DJ (2002) Building collagen molecules, fibrils, and suprafibrillar structures. Journal of structural biology 137 (1–2):2–10
    1. Jones RC III, Otsuka E, Wagstrom E, Jensen CS, Price MP, Gebhart GF (2007) Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. Gastroenterology 133 (1):184–194
    1. Jones RC III, Xu L, Gebhart GF (2005) The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 25 (47):10981–10989
    1. Kaleem B, Maier F, Drissi H, Pierce DM (2017) Low-energy impact of human cartilage: predictors for microcracking the network of collagen. Osteoarthritis Cartilage 25 (4):544–553. doi:10.1016/j.joca.2016.11.009
    1. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327. doi:10.1038/nature10213
    1. Kelsen DP, Portenoy RK, Thaler HT, Niedzwiecki D, Passik SD, Tao Y, Banks W, Brennan MF, Foley KM (1995) Pain and depression in patients with newly diagnosed pancreas cancer. J Clin Oncol 13 (3):748–755. doi:10.1200/jco.1995.13.3.748
    1. Ker RF (1999) The design of soft collagenous load-bearing tissues. Journal of Experimental Biology 202 (23):3315–3324
    1. Kerstein PC, Jacques-Fricke BT, Rengifo J, Mogen BJ, Williams JC, Gottlieb PA, Sachs F, Gomez TM (2013) Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth. J Neurosci 33 (1):273–285. doi:10.1523/jneurosci.2142-12.2013
    1. Kiyatkin ME, Feng B, Schwartz ES, Gebhart GF (2013) Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization. Am J Physiol Gastrointest Liver Physiol 305 (9):G638–648. doi:10.1152/ajpgi.00180.2013
    1. Kumar R, Gronhaug KM, Romijn EI, Finnoy A, Davies CL, Drogset JO, Lilledahl MB (2015) Polarization second harmonic generation microscopy provides quantitative enhanced molecular specificity for tissue diagnostics. J Biophotonics 8 (9):730–739. doi:10.1002/jbio.201400086
    1. La JH, Feng B, Schwartz ES, Brumovsky PR, Gebhart GF (2012) Luminal hypertonicity and acidity modulate colorectal afferents and induce persistent visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 303 (7):G802–809. doi:10.1152/ajpgi.00259.2012
    1. La JH, Gebhart GF (2011) Colitis decreases mechanosensitive K2P channel expression and function in mouse colon sensory neurons. Am J Physiol GastrointestLiver Physiol 301 (1):G165–G174
    1. Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. American Journal of Physiology-Renal Physiology 279 (5):F793–F801. doi:10.1152/ajprenal.2000.279.5.F793
    1. Leung PS, editor (2014) The gastrointestinal system : gastrointestinal, nutritional, and hepatobiliary physiology. Dordrecht: : Springer, Netherlands
    1. Lewis T (1942) Pain. Macmillan, London
    1. Li N, He Y, Yang G, Yu Q, Li M (2019) Role of TRPC1 channels in pressure-mediated activation of airway remodeling. Respiratory Research 20 (1):91. doi:10.1186/s12931-019-1050-x
    1. Liao D, Fan Y, Zeng Y, Gregersen H (2003) Stress distribution in the layered wall of the rat oesophagus. Med Eng Phys 25 (9):731–738
    1. Liao D, Zhao J, Fan Y, Gregersen H (2004) Two-layered quasi-3D finite element model of the oesophagus. Med Eng Phys 26 (7):535–543. doi:10.1016/j.medengphy.2004.04.009
    1. Lin S, Cheng Y, Banks R, Min M, Bewick G, Chen C (2016) Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors. Nat Commun 7:11460.
    1. Liu S, Qu M, Ren W, Hu H, Gao N, Wang G, Wang X, Fei G, Zuo F, Xia Y, Wood J (2008) Differential expression of canonical (classical) transient receptor potential channels in guinea pig enteric nervous system. J Comp Neurol 511 (6):847–862
    1. Loukin S, Zhou X, Su Z, Saimi Y, Kung C (2010) Wild-type and brachyolmia-causing mutant TRPV4 channels respond directly to stretch force. J Biol Chem 285 (35):27176–27181
    1. Louvel D, Delvaux M, Staumont G, Camman F, Fioramonti J, Bueno L, Frexinos J (1996) Intracolonic injection of glycerol: a model for abdominal pain in irritable bowel syndrome? Gastroenterology 110 (2):351–361
    1. Lu X, Zhao J, Gregersen H (2005) Small intestinal morphometric and biomechanical changes during physiological growth in rats. J Biomech 38 (3):417–426. doi:10.1016/j.jbiomech.2004.04.025
    1. Ma R, Seifi M, Papanikolaou M, Brown J, Swinny J, Lewis A (2018) TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders. Front Physiol 9:157.
    1. Marotta PJ, Graziadei IW, Ghent CN (2000) Muscle cramps: a ‘complication’ of cirrhosis. Can J Gastroenterol 14 Suppl D:21D–25D. doi:10.1155/2000/214916
    1. Mazzuoli-Weber G, Kugler E, Bühler C, Kreutz F, Demir I, Ceyhan O, Zeller F, Schemann M (2018) Piezo proteins: incidence and abundance in the enteric nervous system. Is there a link with mechanosensitivity? Cell Tissue Res
    1. McGuire C, Boundouki G, Hockley JRF, Reed D, Cibert-Goton V, Peiris M, Kung V, Broad J, Aziz Q, Chan C, Ahmed S, Thaha MA, Sanger GJ, Blackshaw LA, Knowles CH, Bulmer DC (2018) Ex vivo study of human visceral nociceptors. Gut 67 (1):86–96. doi:10.1136/gutjnl-2016-311629
    1. Messlinger K (1996) Chapter 17. Functional morphology of nociceptive and other fine sensory endings (free nerve endings) in different tissues In: Kumazawa T, Kruger L, Mizumura K (eds) Progress in Brain Research, vol 113 Elsevier, pp 273–298. doi:10.1016/S0079-6123(08)61094-8
    1. Miranda A (2018) 10-Abdominal Pain In: Kliegman RM, Lye PS, Bordini BJ, Toth H, Basel D (eds) Nelson Pediatric Symptom-Based Diagnosis. Elsevier, pp 161–181.e162. doi:10.1016/B978-0-323-39956-2.00010-8
    1. Moshourab R, Wetzel C, Martinez-Salgado C, Lewin G (2013) Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol (Lond) 591 (22):5555–5574
    1. Natali AN, Carniel EL, Gregersen H (2009) Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med Eng Phys 31 (9):1056–1062. doi:10.1016/j.medengphy.2009.07.003
    1. Ness TJ, Gebhart GF (1988) Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res 450 (1–2):153–169
    1. Ness TJ, Gebhart GF (1990) Visceral pain: a review of experimental studies. [Review] [503 refs]. Pain 41 (2):167–234
    1. Ness TJ, Metcalf AM, Gebhart GF (1990) A psychophysiological study in humans using phasic colonic distension as a noxious visceral stimulus. Pain 43 (3):377–386
    1. Orberg J, Baer E, Hiltner A (1983) Organization of collagen fibers in the intestine. Connective tissue research 11 (4):285–297
    1. Orberg J, Klein L, Hiltner A (1982) Scanning electron microscopy of collagen fibers in intestine. Connective tissue research 9 (3):187–193
    1. Page AJ, Brierley SM, Martin CM, Price MP, Symonds E, Butler R, Wemmie JA, Blackshaw LA (2005) Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54 (10):1408–1415
    1. Pasricha PJ, Willis WD, Gebhart GF (2006) Chronic abdominal and visceral pain: theory and practice. Taylor & Francis US,
    1. Perl ER (2007) Ideas about pain, a historical view. Nature reviews Neuroscience 8 (1):71–80. doi:10.1038/nrn2042
    1. Poole D, Amadesi S, Veldhuis N, Abogadie F, Lieu T, Darby W, Liedtke W, Lew M, McIntyre P, Bunnett N (2013) Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 288 (8):5790–5802
    1. Reihsner R, Menzel EJ (1998) Two-dimensional stress-relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine. Journal of Biomechanics 31 (11):985–993. doi:10.1016/S0021-9290(98)00088-8
    1. Reynders A, Mantilleri A, Malapert P, Rialle S, Nidelet S, Laffray S, Beurrier C, Bourinet E, Moqrich A (2015) Transcriptional Profiling of Cutaneous MRGPRD Free Nerve Endings and C-LTMRs. Cell Reports 10 (6):1007–1019. doi:10.1016/j.celrep.2015.01.022
    1. Santos S, Emery N, Neu CP, Pierce DM (2019) Propagation of microcracks in collagen networks of cartilage under mechanical loads. Osteoarthritis Cartilage. doi:10.1016/j.joca.2019.04.017
    1. Sengupta JN, Gebhart GF (1994) Characterization of mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat. J Neurophysiol 71 (6):2046–2060
    1. Shinoda M, Feng B, Gebhart GF (2009) Peripheral and central P2X receptor contributions to colon mechanosensitivity and hypersensitivity in the mouse. Gastroenterology 137 (6):2096–2104. doi:10.1053/j.gastro.2009.06.048
    1. Sipe WE, Brierley SM, Martin CM, Phillis BD, Cruz FB, Grady EF, Liedtke W, Cohen DM, Vanner S, Blackshaw LA, Bunnett NW (2008) Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol GastrointestLiver Physiol 294 (5):G1288–G1298
    1. Siri S, Maier F, Chen L, Santos S, Pierce DM, Feng B (2019a) Differential biomechanical properties of mouse distal colon and rectum innervated by the splanchnic and pelvic afferents. Am J Physiol Gastrointest Liver Physiol 316 (4):G473–G481. doi:10.1152/ajpgi.00324.2018
    1. Siri S, Maier F, Santos S, Pierce DM, Feng B (2019b) The load-bearing function of the colorectal submucosa and its relevance to visceral nociception elicited by mechanical stretch. Am J Physiol Gastrointest Liver Physiol. doi:10.1152/ajpgi.00127.2019
    1. Sokolis DP, Orfanidis IK, Peroulis M (2011) Biomechanical testing and material characterization for the rat large intestine: regional dependence of material parameters. Physiol Meas 32 (12):1969–1982. doi:10.1088/0967-3334/32/12/007
    1. Sokolis DP, Sassani SG (2013) Microstructure-based constitutive modeling for the large intestine validated by histological observations. J Mech Behav Biomed Mater 21:149–166. doi:10.1016/j.jmbbm.2013.02.016
    1. Sommer G, Schriefl A, Zeindlinger G, Katzensteiner A, Ainodhofer H, Saxena A, Holzapfel GA (2013) Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering. Acta Biomater 9 (12):9379–9391. doi:10.1016/j.actbio.2013.07.041
    1. Sostegni S, Diakov A, McIntyre P, Bunnett N, Korbmacher C, Haerteis S (2015) Sensitisation of TRPV4 by PAR2 is independent of intracellular calcium signalling and can be mediated by the biased agonist neutrophil elastase. Pflugers Arch 467 (4):687–701
    1. Spencer NJ, Kyloh M, Duffield M (2014) Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique. PLoS One 9 (11):e112466. doi:10.1371/journal.pone.0112466
    1. Staaf S, Maxvall I, Lind U, Husmark J, Mattsson J, Ernfors P, Pierrou S (2009) Down regulation of TRPC1 by shRNA reduces mechanosensitivity in mouse dorsal root ganglion neurons in vitro. Neurosci Lett 457 (1):3–7
    1. Storkholm JH, Villadsen GE, Jensen SL, Gregersen H (1998) Mechanical properties and collagen content differ between isolated guinea pig duodenum, jejunum, and distal ileum. DigDisSci 43 (9):2034–2041
    1. Tanaka T, Shinoda M, Feng B, Albers KM, Gebhart GF (2011) Modulation of visceral hypersensitivity by glial cell line-derived neurotrophic factor family receptor &alpha;–3 in colorectal afferents. Am J Physiol Gastrointest Liver Physiol 300 (3):G418–424. doi:10.1152/ajpgi.00456.2010
    1. Tracey WD Jr, Wilson RI, Laurent G, Benzer S (2003) painless, a Drosophila gene essential for nociception. Cell 113 (2):261–273
    1. Wang F-B, Powley TL (2007) Vagal innervation of intestines: afferent pathways mapped with new en bloc horseradish peroxidase adaptation. Cell and Tissue Research 329 (2):221–230. doi:10.1007/s00441-007-0413-7
    1. Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, Grover M, Oeckler R, Gottlieb PA, Li HJ, Leiter AB, Farrugia G, Beyder A (2017) Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol 595 (1):79–91. doi:10.1113/jp272718
    1. Xiao R, Xu XZS (2010) Mechanosensitive channels: in touch with Piezo. Current biology : CB 20 (21):R936–R938. doi:10.1016/j.cub.2010.09.053
    1. Yang J, Liao D, Zhao J, Gregersen H (2004) Shear modulus of elasticity of the esophagus. Ann Biomed Eng 32 (9):1223–1230
    1. Yang J, Zhang J, Yang H, Li K, Lei X, Xu C (2016) The potential role of Piezo2 in the mediation of visceral sensation. Neuroscience letters 630:158–163
    1. Yang J, Zhao J, Liao D, Gregersen H (2006) Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes. J Biomech 39 (5):894–904. doi:10.1016/j.jbiomech.2005.01.022
    1. Yiangou Y, Facer P, Smith J, Sangameswaran L, Eglen R, Birch R, Knowles C, Williams N, Anand P (2001) Increased acid-sensing ion channel ASIC-3 in inflamed human intestine. Eur J Gastroenterol Hepatol 13 (8):891–896
    1. Yu J, Zeng Y, Zhao J, Liao D, Gregersen H (2004) Quantitative analysis of collagen fiber angle in the submucosa of small intestine. Comput Biol Med 34 (6):539–550. doi:10.1016/j.compbiomed.2003.06.001
    1. Zagorodnyuk VP, Brookes SJ, Spencer NJ (2010) Structure-function relationship of sensory endings in the gut and bladder. AutonNeurosci 153 (1–2):3–11
    1. Zeng YJ, Qiao AK, Yu JD, Zhao JB, Liao DH, Xu XH, Hans G (2003) Collagen fiber angle in the submucosa of small intestine and its application in Gastroenterology. World J Gastroenterol 9 (4):804–807
    1. Zhao JB, Sha H, Zhuang FY, Gregersen H (2002) Morphological properties and residual strain along the small intestine in rats. World J Gastroenterol 8 (2):312–317

Source: PubMed

Подписаться