A state-of-the-science review and guide for measuring environmental exposure biomarkers in dried blood spots

Tyler A Jacobson, Jasdeep S Kler, Yeunook Bae, Jiexi Chen, Daniel T Ladror, Ramsunder Iyer, Denise A Nunes, Nathan D Montgomery, Joachim D Pleil, William E Funk, Tyler A Jacobson, Jasdeep S Kler, Yeunook Bae, Jiexi Chen, Daniel T Ladror, Ramsunder Iyer, Denise A Nunes, Nathan D Montgomery, Joachim D Pleil, William E Funk

Abstract

Background: Dried blood spot (DBS) sampling is a simple, cost-effective, and minimally invasive alternative to venipuncture for measuring exposure biomarkers in public health and epidemiological research. DBS sampling provides advantages in field-based studies conducted in low-resource settings and in studies involving infants and children. In addition, DBS samples are routinely collected from newborns after birth (i.e., newborn dried blood spots, NDBS), with many states in the United States permitting access to archived NDBS samples for research purposes.

Objectives: We review the state of the science for analyzing exposure biomarkers in DBS samples, both archived and newly collected, and provide guidance on sample collection, storage, and blood volume requirements associated with individual DBS assays. We discuss recent progress regarding analytical methods, analytical sensitivity, and specificity, sample volume requirements, contamination considerations, estimating extracted blood volumes, assessing stability and analyte recovery, and hematocrit effects.

Methods: A systematic search of PubMed (MEDLINE), Embase (Elsevier), and CINAHL (EBSCO) was conducted in March 2022. DBS method development and application studies were divided into three main chemical classes: environmental tobacco smoke, trace elements (including lead, mercury, cadmium, and arsenic), and industrial chemicals (including endocrine-disrupting chemicals and persistent organic pollutants). DBS method development and validation studies were scored on key quality-control and performance parameters by two members of the review team.

Results: Our search identified 47 published reports related to measuring environmental exposure biomarkers in human DBS samples. A total of 28 reports (37 total studies) were on methods development and validation and 19 reports were primarily the application of previously developed DBS assays. High-performing DBS methods have been developed, validated, and applied for detecting environmental exposures to tobacco smoke, trace elements, and several important endocrine-disrupting chemicals and persistent organic pollutants. Additional work is needed for measuring cadmium, arsenic, inorganic mercury, and bisphenol A in DBS and NDBS samples.

Significance: We present an inventory and critical review of available assays for measuring environmental exposure biomarkers in DBS and NDBS samples to help facilitate this sampling medium as an emerging tool for public health (e.g., screening programs, temporal biomonitoring) and environmental epidemiology (e.g., field-based studies).

Keywords: Biomarkers; Biomonitoring; Dried blood spots; Persistent organic pollutants; Trace elements; Environmental Tobacco Smoke.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1. PRISMA flow diagram for identification…
Fig. 1. PRISMA flow diagram for identification of studies for final inclusion in the review.
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
Fig. 2. Exposure-disease continuum.
Fig. 2. Exposure-disease continuum.
This review focuses on environmental exposure biomarkers and excluded studies that used DBS sampling to measure biomarkers of response, for example, non-specific biomarkers of oxidative stress, inflammation, or cholinesterase depression, used commonly in hazard assessments.
Fig. 3. Graphical summary of collection card…
Fig. 3. Graphical summary of collection card with dried blood spots.
The image shows the size of each spot as a function of the volume of blood applied to the filter paper (50–70 µL). The range between 50 and 70 µL corresponds with the typical volume of a single drop of blood collected by finger- or heel-prick. The punches shown on the first three spots show the number of discs that can be removed based on commonly used disc sizes (i.e., 3.2-mm, ~3.2 µL whole blood; 4.7-mm, ~6.9 µL whole blood; and 6.0-mm, ~11.2 µL whole blood; see Supplementary information for more disc-blood volume estimates).

References

    1. Angerer J, Ewers U, Wilhelm M. Human biomonitoring: state of the art. Int J Hyg Environ Health. 2007;210:201–28. doi: 10.1016/j.ijheh.2007.01.024.
    1. Sobus JR, DeWoskin RS, Tan YM, Pleil JD, Phillips MB, George BJ, et al. Uses of NHANES biomarker data for chemical risk assessment: trends, challenges, and opportunities. Environ Health Perspect. 2015;123:919–27. doi: 10.1289/ehp.1409177.
    1. Edwards SW, Preston RJ. Systems biology and mode of action based risk assessment. Toxicological Sci. 2008;106:312–8. doi: 10.1093/toxsci/kfn190.
    1. Pleil JD, Sheldon LS. Adapting concepts from systems biology to develop systems exposure event networks for exposure science research. Biomarkers. 2011;16:99–105. doi: 10.3109/1354750X.2010.541565.
    1. Smolders R, Schramm KW, Nickmilder M, Schoeters G. Applicability of non-invasively collected matrices for human biomonitoring. Environ Health. 2009;8:8. doi: 10.1186/1476-069X-8-8.
    1. Sobus JR, Tan YM, Pleil JD, Sheldon LS. A biomonitoring framework to support exposure and risk assessments. Sci Total Environ. 2011;409:4875–84. doi: 10.1016/j.scitotenv.2011.07.046.
    1. Esteban M, Castano A. Non-invasive matrices in human biomonitoring: a review. Environ Int. 2009;35:438–49. doi: 10.1016/j.envint.2008.09.003.
    1. Wallace MA, Kormos TM, Pleil JD. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. J Toxicol Environ Health B Crit Rev. 2016;19:380–409. doi: 10.1080/10937404.2016.1215772.
    1. McDade TW. Development and validation of assay protocols for use with dried blood spot samples. Am J Hum Biol. 2014;26:1–9. doi: 10.1002/ajhb.22463.
    1. Allen AM, Lundeen K, Murphy SE, Spector L, Harlow BL. Web-delivered multimedia training materials for the self-collection of dried blood spots: a formative project. JMIR Form Res. 2018;2:e11025. doi: 10.2196/11025.
    1. Sullivan PS, Sailey C, Guest JL, Guarner J, Kelley C, Siegler AJ, et al. Detection of SARS-CoV-2 RNA and antibodies in diverse samples: protocol to validate the sufficiency of provider-observed, home-collected blood, saliva, and oropharyngeal samples. JMIR Public Health Surveill. 2020;6:e19054. doi: 10.2196/19054.
    1. Forrest C, Blackwell C, Camargo C., Jr Advancing the science of children’s positive health in the NIH Environmental influences on Child Health Outcomes (ECHO) Research Program. J Pediatr. 2018;196:298–300. doi: 10.1016/j.jpeds.2018.02.004.
    1. Buckley JP, Barrett ES, Beamer PI, Bennett DH, Bloom MS, Fennell TR, et al. Opportunities for evaluating chemical exposures and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) Program. J Expo Sci Environ Epidemiol. 2020;30:397–419. doi: 10.1038/s41370-020-0211-9.
    1. Nyanza EC, Bernier FP, Manyama M, Hatfield J, Martin JW, Dewey D. Maternal exposure to arsenic and mercury in small-scale gold mining areas of Northern Tanzania. Environ Res. 2019;173:432–42.. doi: 10.1016/j.envres.2019.03.031.
    1. Nyanza EC, Dewey D, Manyama M, Martin JW, Hatfield J, Bernier FP. Maternal exposure to arsenic and mercury and associated risk of adverse birth outcomes in small-scale gold mining communities in Northern Tanzania. Environ Int. 2020;137:105450. doi: 10.1016/j.envint.2019.105450.
    1. Nyanza E, Bernier F, Martin J, Manyama M, Hatfield J, Dewey D. Effects of prenatal exposure and co-exposure to metallic or metalloid elements on early infant neurodevelopmental outcomes in areas with small-scale gold mining activities in Northern Tanzania. Environ Int. 2021;149:106104.
    1. Barr DB, Kannan K, Cui Y, Merrill L, Petrick LM, Meeker JD, et al. The use of dried blood spots for characterizing children’s exposure to organic environmental chemicals. Environ Res. 2021;195:110796. doi: 10.1016/j.envres.2021.110796.
    1. Parsons P, Galusha A, Cui Y, Faustman E, Falman J, Meeker J, et al. A critical review of the analysis of dried blood spots for characterizing human exposure to inorganic targets using methods based on analytical atomic spectrometry. R Soc Chem. 2020;35:2092–112.
    1. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43. doi: 10.1542/peds.32.3.338.
    1. Naylor S, Kajbaf M, Lamb JH, Jahanshahi M, Gorrod JW. An evaluation of tandem mass spectrometry in drug metabolism studies. Biol Mass Spectrom. 1993;22:388–94.. doi: 10.1002/bms.1200220705.
    1. Health Resources and Services Administration. Recommended Uniform Screening Panel. 2020. Available from:
    1. Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJ, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39:171–87. doi: 10.1053/j.semperi.2015.03.002.
    1. Angerer J, Mannschreck C, Gündel J. Biological monitoring and biochemical effect monitoring of exposure to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health. 1997;70:365–77. doi: 10.1007/s004200050231.
    1. Wagner M, Tonoli D, Varesio E, Hopfgartner G. The use of mass spectrometry to analyze dried blood spots. Mass Spectrom Rev. 2016;35:361–438. doi: 10.1002/mas.21441.
    1. Olshan AF. Meeting report: the use of newborn blood spots in environmental research: opportunities and challenges. Environ Health Perspect. 2007;115:1767–79. doi: 10.1289/ehp.10511.
    1. DiFranza JR, Aligne CA, Weitzman M. Prenatal and postnatal environmental tobacco smoke exposure and children’s health. Pediatrics. 2004;113:1007–15. doi: 10.1542/peds.113.S3.1007.
    1. Pope CA, Burnett RT, Turner MC, Cohen A, Krewski D, Jerrett M, et al. Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships. Environ Health Perspect. 2011;119:1616–21. doi: 10.1289/ehp.1103639.
    1. Murphy SE, Wickham KM, Lindgren BR, Spector LG, Joseph A. Cotinine and trans 3’-hydroxycotinine in dried blood spots as biomarkers of tobacco exposure and nicotine metabolism. J Expo Sci Environ Epidemiol. 2013;23:513–8. doi: 10.1038/jes.2013.7.
    1. Tretzel L, Thomas A, Piper T, Hedeland M, Geyer H, Schänzer W, et al. Fully automated determination of nicotine and its major metabolites in whole blood by means of a DBS online-SPE LC-HR-MS/MS approach for sports drug testing. J Pharm Biomed Anal. 2016;123:132–40. doi: 10.1016/j.jpba.2016.02.009.
    1. Spector LG, Hecht SS, Ognjanovic S, Carmella SG, Ross JA. Detection of cotinine in newborn dried blood spots. Cancer Epidemiol Biomark Prev. 2007;16:1902–5. doi: 10.1158/1055-9965.EPI-07-0230.
    1. Yang J, Pearl M, Jacob P, DeLorenze GN, Benowitz NL, Yu L, et al. Levels of cotinine in dried blood specimens from newborns as a biomarker of maternal smoking close to the time of delivery. Am J Epidemiol. 2013;178:1648–54.. doi: 10.1093/aje/kwt182.
    1. Searles Nielsen S, Dills RL, Glass M, Mueller BA. Accuracy of prenatal smoking data from Washington State birth certificates in a population-based sample with cotinine measurements. Ann Epidemiol. 2014;24:236–9. doi: 10.1016/j.annepidem.2013.12.008.
    1. Sosnoff CS, Bernert JT. Analysis of cotinine in dried blood spots by LC APCI tandem mass spectrometry. Clin Chim Acta. 2008;388:228–9. doi: 10.1016/j.cca.2007.10.031.
    1. Ladror D, Pitt B, Funk W. Quantification of cotinine in dried blood spots as a biomarker of exposure to tobacco smoke. Biomarkers. 2018;23:44–50. doi: 10.1080/1354750X.2017.1375558.
    1. Joseph A, Spector L, Wickham K, Janis G, Winickoff J, Lindgren B, et al. Biomarker evidence of tobacco smoke exposure in children participating in lead screening. Am J Public Health. 2013;103:e54–9. doi: 10.2105/AJPH.2013.301315.
    1. Spector LG, Murphy SE, Wickham KM, Lindgren B, Joseph AM. Prenatal tobacco exposure and cotinine in newborn dried blood spots. Pediatrics. 2014;133:e1632–8. doi: 10.1542/peds.2013-3118.
    1. Biomonitoring Data Tables for Environmental Chemicals [dataset]. Centers for Disease Control and Prevention. 2022. Available from:
    1. American Heart Association. Structural Racism & Tobacco. 2020. Available from:
    1. Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12:627–42.. doi: 10.1038/nrcardio.2015.152.
    1. Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Ye BJ, et al. Evaluation and management of lead exposure. Ann Occup Environ Med. 2015;27:30. doi: 10.1186/s40557-015-0085-9.
    1. National Center for Environmental Health, Division of Environmental Health Science and Practice. Blood Lead Reference Value. 2021. Available from:
    1. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol. 2013;47:4967–83.. doi: 10.1021/es305071v.
    1. Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, et al. Evidence on the human health effects of low-level methylmercury exposure. Environ Health Perspect. 2012;120:799–806. doi: 10.1289/ehp.1104494.
    1. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013;121:295–302. doi: 10.1289/ehp.1205875.
    1. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity. Int J Environ Res Public Health. 2020;17:3782.
    1. Rodríguez-Saldaña V, Fobil J, Basu N. Lead (Pb) exposure assessment in dried blood spots using total reflection X-ray fluorescence (TXRF) Environ Res. 2021;198:110444. doi: 10.1016/j.envres.2020.110444.
    1. Santa-Rios A, Barst BD, Basu N. Mercury speciation in whole blood and dried blood spots from capillary and venous sources. Anal Chem. 2020;92:3605–12.. doi: 10.1021/acs.analchem.9b04407.
    1. Nyanza EC, Dewey D, Bernier F, Manyama M, Hatfield J, Martin JW. Validation of dried blood spots for maternal biomonitoring of nonessential elements in an artisanal and small-scale gold mining area of Tanzania. Environ Toxicol Chem. 2019;38:1285–93.. doi: 10.1002/etc.4420.
    1. Schweizer AK, Kabesch M, Quartucci C, Bose-O’Reilly S, Rakete S. Implementation of mercury biomonitoring in German adults using dried blood spot sampling in combination with direct mercury analysis. Environ Monit Assess. 2021;193:488. doi: 10.1007/s10661-021-09254-0.
    1. Archer NP, Bradford CM, Klein DM, Barnes J, Smith LJ, Villanacci JF. Relationship between prenatal lead exposure and infant blood lead levels. Matern Child Health J. 2012;16:1518–24.. doi: 10.1007/s10995-011-0917-3.
    1. Nelson JW, Edhlund BL, Johnson J, Rosebush CE, Holmquist ZS, Swan SH, et al. Assessing a new method for measuring fetal exposure to mercury: newborn bloodspots. Int J Environ Res Public Health. 2016;13:692.
    1. Funk WE, Pleil JD, Sauter DJ, McDade TW, Holl JL. Use of dried blood spots for estimating children’s exposures to heavy metals in epidemiological research. J Environ Anal Toxicol. 2015;S7:002.
    1. Funk WE, McGee JK, Olshan AF, Ghio AJ. Quantification of arsenic, lead, mercury and cadmium in newborn dried blood spots. Biomarkers. 2013;18:174–7. doi: 10.3109/1354750X.2012.750379.
    1. Stanton NV, Maney JM, Jones R. Evaluation of filter paper blood lead methods: results of a pilot proficiency testing program. Clin Chem. 1999;45:2229–35. doi: 10.1093/clinchem/45.12.2229.
    1. Wang ST, Demshar HP. Determination of blood lead in dried blood-spot specimens by Zeeman-effect background corrected atomic absorption spectrometry. Analyst. 1992;117:959–61. doi: 10.1039/an9921700959.
    1. Verebey K, Eng Y, Davidow B, Ramon A. Rapid, sensitive micro blood lead analysis: a mass screening technique for lead poisoning. J Anal Toxicol. 1991;15:237–40. doi: 10.1093/jat/15.5.237.
    1. Cernik AA, Sayers MH. Determination of lead in capillary blood using a paper punched disc atomic absorption technique. Application to the supervision of lead workers. Br J Ind Med. 1971;28:392–8.
    1. Cernik AA. Determination of blood lead using a 4.0 mm paper punched disc carbon sampling cup technique. Br J Ind Med. 1974;31:239–44.
    1. Carter GF. The paper punched disc technique for lead in blood samples with abnormal haemoglobin values. Br J Ind Med. 1978;35:235–40.
    1. Srivuthana K, Yee HY, Bhambhani K, Elton RM, Simpson PM, Kauffman RE. A new filter paper method to measure capillary blood lead level in children. Arch Pediatr Adolesc Med. 1996;150:498–502. doi: 10.1001/archpedi.1996.02170300052010.
    1. Yee HY, Holtrop TG. An improved capillary blood-filter paper-graphite furnace atomic absorption spectrometric method for lead screening. J Anal Toxicol. 1997;21:142–8. doi: 10.1093/jat/21.2.142.
    1. Chaudhuri SN, Butala SJ, Ball RW, Braniff CT, Consortium RMB. Pilot study for utilization of dried blood spots for screening of lead, mercury and cadmium in newborns. J Expo Sci Environ Epidemiol. 2009;19:298–316. doi: 10.1038/jes.2008.19.
    1. Specht AJ, Obrycki JF, Mazumdar M, Weisskopf MG. Feasibility of lead exposure assessment in blood spots using energy-dispersive X-ray fluorescence. Environ Sci Technol. 2021;55:5050–5. doi: 10.1021/acs.est.0c06622.
    1. Basu N, Eng JWL, Perkins M, Santa-Rios A, Martincevic G, Carlson K, et al. Development and application of a novel method to characterize methylmercury exposure in newborns using dried blood spots. Environ Res. 2017;159:276–82.. doi: 10.1016/j.envres.2017.08.021.
    1. Langer EK, Johnson KJ, Shafer MM, Gorski P, Overdier J, Musselman J, et al. Characterization of the elemental composition of newborn blood spots using sector-field inductively coupled plasma-mass spectrometry. J Expo Sci Environ Epidemiol. 2011;21:355–64.. doi: 10.1038/jes.2010.19.
    1. Subcommittee on Arsenic in Drinking Water. In: National Research Council, editor. Arsenic in drinking water. Washington, DC: National Academy Press; 1999.
    1. Verdon CP, Caldwell KL, Fresquez MR, Jones RL. Determination of seven arsenic compounds in urine by HPLC-ICP-DRC-MS: a CDC population biomonitoring method. Anal Bioanal Chem. 2009;393:939–47.. doi: 10.1007/s00216-008-2537-3.
    1. Howe CG, Farzan SF, Garcia E, Jursa T, Iyer R, Berhane K, et al. Arsenic and birth outcomes in a predominately lower income Hispanic pregnancy cohort in Los Angeles. Environ Res. 2020;184:109294. doi: 10.1016/j.envres.2020.109294.
    1. Santa-Rios A, Barst BD, Tejeda-Benitez L, Palacios-Torres Y, Baumgartner J, Basu N. Dried blood spots to characterize mercury speciation and exposure in a Colombian artisanal and small-scale gold mining community. Chemosphere. 2021;266:129001. doi: 10.1016/j.chemosphere.2020.129001.
    1. Santa-Rios A, Fobil J, Basu N. Methylmercury measurements in dried blood spots from electronic waste workers sampled from Agbogbloshie, Ghana. Environ Toxicol Chem. 2021;40:2183–8. doi: 10.1002/etc.5121.
    1. Sen A, Heredia N, Senut MC, Land S, Hollocher K, Lu X, et al. Multigenerational epigenetic inheritance in humans: DNA methylation changes associated with maternal exposure to lead can be transmitted to the grandchildren. Sci Rep. 2015;5:14466. doi: 10.1038/srep14466.
    1. Sen A, Heredia N, Senut MC, Hess M, Land S, Qu W, et al. Early life lead exposure causes gender-specific changes in the DNA methylation profile of DNA extracted from dried blood spots. Epigenomics. 2015;7:379–93. doi: 10.2217/epi.15.2.
    1. Montrose L, Goodrich JM, Morishita M, Kochmanski J, Klaver Z, Cavalcante R, et al. Neonatal lead (Pb) exposure and DNA methylation profiles in dried bloodspots. Int J Environ Res Public Health. 2020;17:6775.
    1. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33:378–455. doi: 10.1210/er.2011-1050.
    1. Schug TT, Blawas AM, Gray K, Heindel JJ, Lawler CP. Elucidating the links between endocrine disruptors and neurodevelopment. Endocrinology. 2015;156:1941–51. doi: 10.1210/en.2014-1734.
    1. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127:204–15. doi: 10.1016/j.jsbmb.2011.08.007.
    1. Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharm. 2017;51:56–70. doi: 10.1016/j.etap.2017.02.024.
    1. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30:293–342. doi: 10.1210/er.2009-0002.
    1. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA) Reprod Toxicol. 2007;24:139–77. doi: 10.1016/j.reprotox.2007.07.010.
    1. Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, et al. Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity—a review. Environ Sci Technol. 2016;50:5438–53. doi: 10.1021/acs.est.5b05387.
    1. Cordner A, De La Rosa VY, Schaider LA, Rudel RA, Richter L, Brown P. Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J Expo Sci Environ Epidemiol. 2019;29:157–71.. doi: 10.1038/s41370-018-0099-9.
    1. Guo W, Pan B, Sakkiah S, Yavas G, Ge W, Zou W, et al. Persistent organic pollutants in food: contamination sources, health effects and detection methods. Int J Environ Res Public Health. 2019;16:4361.
    1. Lee DH. Persistent organic pollutants and obesity-related metabolic dysfunction: focusing on type 2 diabetes. Epidemiol Health. 2012;34:e2012002. doi: 10.4178/epih/e2012002.
    1. Fry K, Power MC. Persistent organic pollutants and mortality in the United States, NHANES 1999-2011. Environ Health. 2017;16:105. doi: 10.1186/s12940-017-0313-6.
    1. Alharbi O, Basheer A, Khattab R, Ali I. Health and environmental effects of persistent organic pollutants. J Mol Liq. 2018;263:442–53.. doi: 10.1016/j.molliq.2018.05.029.
    1. Ma W, Kannan K, Wu Q, Bell EM, Druschel CM, Caggana M, et al. Analysis of polyfluoroalkyl substances and bisphenol A in dried blood spots by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2013;405:4127–38. doi: 10.1007/s00216-013-6787-3.
    1. Batterman S, Chernyak S. Performance and storage integrity of dried blood spots for PCB, BFR and pesticide measurements. Sci Total Environ. 2014;494–495:252–60. doi: 10.1016/j.scitotenv.2014.06.142.
    1. Kato K, Wanigatunga AA, Needham LL, Calafat AM. Analysis of blood spots for polyfluoroalkyl chemicals. Anal Chim Acta. 2009;656:51–5. doi: 10.1016/j.aca.2009.10.007.
    1. Burse VW, DeGuzman MR, Korver MP, Najam AR, Williams CC, Hannon WH, et al. Preliminary investigation of the use of dried-blood spots for the assessment of in utero exposure to environmental pollutants. Biochem Mol Med. 1997;61:236–9. doi: 10.1006/bmme.1997.2603.
    1. Poothong S, Papadopoulou E, Lundanes E, Padilla-Sánchez JA, Thomsen C, Haug LS. Dried blood spots for reliable biomonitoring of poly- and perfluoroalkyl substances (PFASs) Sci Total Environ. 2019;655:1420–6. doi: 10.1016/j.scitotenv.2018.11.214.
    1. Ma WL, Gao C, Bell EM, Druschel CM, Caggana M, Aldous KM, et al. Analysis of polychlorinated biphenyls and organochlorine pesticides in archived dried blood spots and its application to track temporal trends of environmental chemicals in newborns. Environ Res. 2014;133:204–10. doi: 10.1016/j.envres.2014.05.029.
    1. Spliethoff HM, Tao L, Shaver SM, Aldous KM, Pass KA, Kannan K, et al. Use of newborn screening program blood spots for exposure assessment: declining levels of perluorinated compounds in New York State infants. Environ Sci Technol. 2008;42:5361–7. doi: 10.1021/es8006244.
    1. Ma WL, Yun S, Bell EM, Druschel CM, Caggana M, Aldous KM, et al. Temporal trends of polybrominated diphenyl ethers (PBDEs) in the blood of newborns from New York State during 1997 through 2011: analysis of dried blood spots from the newborn screening program. Environ Sci Technol. 2013;47:8015–21. doi: 10.1021/es401857v.
    1. Bell EM, Yeung EH, Ma W, Kannan K, Sundaram R, Smarr MM, et al. Concentrations of endocrine disrupting chemicals in newborn blood spots and infant outcomes in the upstate KIDS study. Environ Int. 2018;121:232–9. doi: 10.1016/j.envint.2018.09.005.
    1. Yeung EH, Bell EM, Sundaram R, Ghassabian A, Ma W, Kannan K, et al. Examining endocrine disruptors measured in newborn dried blood spots and early childhood growth in a prospective cohort. Obesity (Silver Spring) 2019;27:145–51.. doi: 10.1002/oby.22332.
    1. Ghassabian A, Bell EM, Ma WL, Sundaram R, Kannan K, Buck Louis GM, et al. Concentrations of perfluoroalkyl substances and bisphenol A in newborn dried blood spots and the association with child behavior. Environ Pollut. 2018;243:1629–36. doi: 10.1016/j.envpol.2018.09.107.
    1. Bell GA, Perkins N, Buck Louis GM, Kannan K, Bell EM, Gao C, et al. Exposure to persistent organic pollutants and birth characteristics: the Upstate KIDS Study. Epidemiology. 2019;30:S94–S100. doi: 10.1097/EDE.0000000000001095.
    1. Robinson SL, Zeng X, Guan W, Sundaram R, Mendola P, Putnick DL, et al. Perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) and DNA methylation in newborn dried blood spots in the Upstate KIDS cohort. Environ Res. 2021;194:110668. doi: 10.1016/j.envres.2020.110668.
    1. Gross RS, Ghassabian A, Vandyousefi S, Messito MJ, Gao C, Kannan K, et al. Persistent organic pollutants exposure in newborn dried blood spots and infant weight status: a case-control study of low-income Hispanic mother-infant pairs. Environ Pollut. 2020;267:115427. doi: 10.1016/j.envpol.2020.115427.
    1. Funk WE, Waidyanatha S, Chaing SH, Rappaport SM. Hemoglobin adducts of benzene oxide in neonatal and adult dried blood spots. Cancer Epidemiol Biomark Prev. 2008;17:1896–901. doi: 10.1158/1055-9965.EPI-08-0356.
    1. Raju KS, Taneja I, Rashid M, Sonkar AK, Wahajuddin M, Singh SP. DBS-platform for biomonitoring and toxicokinetics of toxicants: proof of concept using LC-MS/MS analysis of fipronil and its metabolites in blood. Sci Rep. 2016;6:22447. doi: 10.1038/srep22447.
    1. Mulla H, Yakkundi S, McElnay J, Lutsar I, Metsvaht T, Varendi H, et al. An observational study of blood concentrations and kinetics of methyl- and propyl-parabens in neonates. Pharm Res. 2015;32:1084–93. doi: 10.1007/s11095-014-1520-2.
    1. Starlin Z, Harahap Y, S Sitepu E. Method validation of acrylamide in dried blood spot by liquid chromatography-tandem mass spectrometry. Pak J Biol Sci. 2020;23:1321–31.. doi: 10.3923/pjbs.2020.1321.1331.
    1. Mishra V, Vaessen M, Boerma JT, Arnold F, Way A, Barrere B, et al. HIV testing in national population-based surveys: experience from the Demographic and Health Surveys. Bull World Health Organ. 2006;84:537–45. doi: 10.2471/BLT.05.029520.
    1. Phillips A, Shroufi A, Vojnov L, Cohn J, Roberts T, Ellman T, et al. Sustainable HIV treatment in Africa through viral-load-informed differentiated care. Nature. 2015;528:S68–76. doi: 10.1038/nature16046.
    1. Bertagnolio S, Parkin NT, Jordan M, Brooks J, García-Lerma JG. Dried blood spots for HIV-1 drug resistance and viral load testing: a review of current knowledge and WHO efforts for global HIV drug resistance surveillance. AIDS Rev. 2010;12:195–208.
    1. Parkin NT. Measurement of HIV-1 viral load for drug resistance surveillance using dried blood spots: literature review and modeling of contribution of DNA and RNA. AIDS Rev. 2014;16:160–71.
    1. Roberts T, Cohn J, Bonner K, Hargreaves S. Scale-up of routine viral load testing in resource-poor settings: current and future implementation challenges. Clin Infect Dis. 2016;62:1043–8. doi: 10.1093/cid/ciw001.
    1. Ciaranello AL, Park JE, Ramirez-Avila L, Freedberg KA, Walensky RP, Leroy V. Early infant HIV-1 diagnosis programs in resource-limited settings: opportunities for improved outcomes and more cost-effective interventions. BMC Med. 2011;9:59. doi: 10.1186/1741-7015-9-59.
    1. McDade TW, McNally EM, D’Aquila R, Mustanski B, Miller A, Vaught LA, et al. Enzyme immunoassay for SARS-CoV-2 antibodies in dried blood spot samples: a minimally-invasive approach to facilitate community- and population-based screening. medRxiv [Preprint]. Available from: .
    1. McDade TW, McNally EM, Zelikovich AS, D'Aquila R, Mustanski B, Miller A, et al. High seroprevalence for SARS-CoV-2 among household members of essential workers detected using dried blood spot assay. PLOS ONE. 2020;15:e0237833.
    1. Moat SJ, Zelek WM, Carne E, Ponsford MJ, Bramhall K, Jones S, et al. Development of a high-throughput SARS-CoV-2 antibody testing pathway using dried blood spot specimens. Annals of Clinical Biochemistry. 2021;58:123–31.

Source: PubMed

Подписаться