Expanding the Potential Therapeutic Options for Remote Ischemic Preconditioning: Use in Multiple Sclerosis

Carlos R Camara-Lemarroy, Luanne Metz, Eric E Smith, Jeff F Dunn, V Wee Yong, Carlos R Camara-Lemarroy, Luanne Metz, Eric E Smith, Jeff F Dunn, V Wee Yong

No abstract available

Keywords: ischemic preconditioning; multiple sclerosis; neuroimmunology; neuroprotection; remote ischemic preconditioning.

Figures

Figure 1
Figure 1
Possible neuroprotective mechanisms of ReIP in MS and proposed intervention. (A) ReIP can modulate several of the typical pathogenic mechanisms involved in MS. In the periphery, ReIP can alter lymphocyte populations and may also maintain blood brain barrier (BBB) permeability through reduction in matrix metalloproteinases (MMPs) and increases in transforming growth factor beta (TGF-beta). In the central nervous system, ReIP increases the expression of hypoxia inducible factor-1 alpha (HIF1-alpha), heat shock proteins (HSP) and erythropoietin (EPO), conferring neurons and glia protection against inflammatory insults and apoptosis. ReIP also reduces the production of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha) and increases levels of anti-inflammatory cytokines such as interleukin (IL)-10. ReIP ameliorates oxidative stress by reducing the production of reactive oxygen species (ROS) and nitric oxide (NO). (B) Patients with relapsing remitting MS (RRMS) or progressive forms of MS could be randomized to receive daily, chronic arm ReIP for 1–2 years or a sham procedure. Relevant outcomes would include relapse rate for RRMS, and for all patients, measures of disability such as the expanded disability status score (EDSS), 25 foot-walking test (25FWT), the 9-hole peg test (9HPT) and measures of cognition. MRI biomarkers looking at lesion load and atrophy as well as plausible biomarkers could be of use as well. T, T-lymphocytes; B, B-lymphocytes; D, dendritic cell; M, microglia; N, neuron; A, astrocyte; O, oligodendrocyte; P, plasma cell; NF-κB, nuclear factor kappa-B.

References

    1. Chen G, Thakkar M, Robinson C, Doré S. Limb remote ischemic conditioning: mechanisms, anesthetics, and the potential for expanding therapeutic options. Front Neurol. (2018) 9:40. 10.3389/fneur.2018.00040
    1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation (1986) 74:1124–36. 10.1161/01.CIR.74.5.1124
    1. Meller R, Simon RP. A critical review of mechanisms regulating remote preconditioning-induced brain protection. J Appl Physiol. (2015) 119:1135–42. 10.1152/japplphysiol.00169.2015
    1. Le Page S, Prunier F. Remote ischemic conditioning: current clinical perspectives. J Cardiol. (2015) 66:91–6. 10.1016/j.jjcc.2015.01.009
    1. Luo Y, Wang Y, Lu H, Gao Y. 'Ome' on the range: update on high-altitude acclimatization/adaptation and disease. Mol Biosyst. (2014) 10:2748–55. 10.1039/c4mb00119b
    1. Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning-Current knowledge and potential future applications after 30 years of experience. Adv Med Sci. (2017) 62:307–16. 10.1016/j.advms.2016.11.006
    1. Aulakh AS, Randhawa PK, Singh N, Jaggi AS. Neurogenic pathways in remote ischemic preconditioning induced cardioprotection: evidences and possible mechanisms. Korean J Physiol Pharmacol. (2017) 21:145–52. 10.4196/kjpp.2017.21.2.145
    1. Thijssen DH, Maxwell J, Green DJ, Cable NT, Jones H. Repeated ischaemic preconditioning: a novel therapeutic intervention and potential underlying mechanisms. Exp Physiol. (2016) 101:677–92. 10.1113/EP085566
    1. Zhao W, Li S, Ren C, Meng R, Ji X. Chronic remote ischemic conditioning may mimic regular exercise: perspective from clinical studies. Aging Dis. (2018) 9:165–171. 10.14336/AD.2017.1015
    1. Davies WR, Brown AJ, Watson W, McCormick LM, West NE, Dutka DP, et al. . Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circ Cardiovasc Interv. (2013) 6:246–51. 10.1161/CIRCINTERVENTIONS.112.000184
    1. Cho YJ, Lee EH, Lee K, Kim TK, Hong DM, Chin JH, et al. . Long-term clinical outcomes of Remote Ischemic Preconditioning and Postconditioning Outcome (RISPO) trial in patients undergoing cardiac surgery. Int J Cardiol. (2017) 231:84–89. 10.1016/j.ijcard.2016.12.146
    1. Zarbock A, Kellum JA, Van Aken H, Schmidt C, Küllmar M, Rosenberger P, et al. . Long-term effects of remote ischemic preconditioning on kidney function in high-risk cardiac surgery patients: follow-up results from the RenalRIP Trial. Anesthesiology (2017) 126:787–98. 10.1097/ALN.0000000000001598
    1. Hougaard KD, Hjort N, Zeidler D, Sørensen L, Nørgaard A, Hansen TM, et al. . Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial. Stroke (2014) 45:159–67. 10.1161/STROKEAHA.113.001346
    1. England TJ, Hedstrom A, O'Sullivan S, Donnelly R, Barrett DA, Sarmad S, et al. . RECAST (Remote Ischemic Conditioning After Stroke Trial): a Pilot Randomized Placebo Controlled Phase II Trial in Acute Ischemic Stroke. Stroke (2017) 48:1412–5. 10.1161/STROKEAHA.116.016429
    1. Meng R, Asmaro K, Meng L, Liu Y, Ma C, Xi C, et al. . Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology (2012) 79:1853–61. 10.1212/WNL.0b013e318271f76a
    1. Mi T, Yu F, Ji X, Sun Y, Qu D. The interventional effect of remote ischemic preconditioning on cerebral small vessel disease: a pilot randomized clinical trial. Eur Neurol. (2016) 76:28–34. 10.1159/000447536
    1. Wang Y, Meng R, Song H, Liu G, Hua Y, Cui D, et al. . Remote ischemic conditioning may improve outcomes of patients with cerebral small-vessel disease. Stroke (2017) 48:3064–72. 10.1161/STROKEAHA.117.017691
    1. Liu X, Sha O, Cho EY. Remote ischemic postconditioning promotes the survival of retinal ganglion cells after optic nerve injury. J Mol Neurosci. (2013) 51:639–46. 10.1007/s12031-013-0036-2
    1. Pérez-Pinzón MA, Alonso O, Kraydieh S, Dietrich WD. Induction of tolerance against traumatic brain injury by ischemic preconditioning. Neuroreport (1999) 10:2951–4.
    1. Ma W, Cao YY, Qu S, Ma SS, Wang JZ, Deng LQ, et al. . Remote ischemic preconditioning provides neuroprotection: impact on ketamine-induced neuroapoptosis in the developing rat brain. Eur Rev Med Pharmacol Sci. (2016) 20:4972–9. Available online at:
    1. D'haeseleer M, Hostenbach S, Peeters I, Sankari SE, Nagels G, De Keyser J, et al. . Cerebral hypoperfusion: a new pathophysiologic concept in multiple sclerosis? J Cereb Blood Flow Metab. (2015) 35:1406–10. 10.1038/jcbfm.2015.131
    1. Martinez Sosa S, Smith KJ. Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin Sci. (2017) 131:2503–24. 10.1042/CS20170981
    1. Yang R, Dunn JF. Reduced cortical microvascular oxygenation in multiple sclerosis: a blinded, case-controlled study using a novel quantitative near-infrared spectroscopy method. Sci Rep. (2015) 5:16477. 10.1038/srep16477
    1. Oba T, Yasukawa H, Nagata T, Kyogoku S, Minami T, Nishihara M, et al. . Renal nerve-mediated erythropoietin release confers cardioprotection during remote ischemic preconditioning. Circ J. (2015) 79:1557–67. 10.1253/circj.CJ-14-1171
    1. Xia M, Ding Q, Zhang Z, Feng Q. Remote limb ischemic preconditioning protects rats against cerebral ischemia via HIF-1α/AMPK/HSP70 Pathway. Cell Mol Neurobiol. (2017) 37:1105–14. 10.1007/s10571-016-0444-2
    1. Shin T, Ahn M, Moon C, Kim S. Erythropoietin and autoimmune neuroinflammation: lessons from experimental autoimmune encephalomyelitis and experimental autoimmune neuritis. Anat Cell Biol. (2012) 45:215–20. 10.5115/acb.2012.45.4.215
    1. Shan K, Pang R, Zhao C, Liu X, Gao W, Zhang J, et al. IL-17-triggered downregulation of miR-497 results in high HIF-1α expression and consequent IL-1β and IL-6 production by astrocytes in EAE mice. Cell Mol Immunol. (2017) 14:909–23. 10.1038/cmi.2017.12
    1. Selimoglu O, Ugurlucan M, Basaran M, Gungor F, Banach M, Cucu O, et al. . Efficacy of remote ischaemic preconditioning for spinal cord protection against ischaemic injury: association with heat shock protein expression. Folia Neuropathol. (2008) 46:204–12. Available online at:
    1. Mansilla MJ, Montalban X, Espejo C. Heat shock protein 70: roles in multiple sclerosis. Mol Med. (2012) 18:1018–28. 10.2119/molmed.2012.00119
    1. Mansilla MJ, Costa C, Eixarch H, Tepavcevic V, Castillo M, Martin R, et al. . Hsp70 regulates immune response in experimental autoimmune encephalomyelitis. PLoS ONE (2014) 9:e105737. 10.1371/journal.pone.0105737
    1. McDonough A, Weinstein JR. Neuroimmune response in ischemic preconditioning. Neurotherapeutics (2016) 13:748–61. 10.1007/s13311-016-0465-z
    1. Dello Russo C, Lisi L, Feinstein DL, Navarra P. mTOR kinase, a key player in the regulation of glial functions: relevance for the therapy of multiple sclerosis. Glia (2013) 61:301–11. 10.1002/glia.22433
    1. Willenborg DO, Staykova M, Fordham S, O'Brien N, Linares D. The contribution of nitric oxide and interferon gamma to the regulation of the neuro-inflammation in experimental autoimmune encephalomyelitis. J Neuroimmunol. (2007) 191:16–25. 10.1016/j.jneuroim.2007.09.007
    1. Davies AL, Desai RA, Bloomfield PS, McIntosh PR, Chapple KJ, Linington C, et al. . Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann Neurol. (2013) 74:815–25. 10.1002/ana.24006
    1. Johnson TW, Wu Y, Nathoo N, Rogers JA, Wee Yong V, Dunn JF. Gray matter hypoxia in the brain of the experimental autoimmune encephalomyelitis model of multiple sclerosis. PLoS ONE (2016) 11:e0167196. 10.1371/journal.pone.0167196
    1. Esen N, Katyshev V, Serkin Z, Katysheva S, Dore-Duffy P. Endogenous adaptation to low oxygen modulates T-cell regulatory pathways in EAE. J Neuroinflamm. (2016) 13:13. 10.1186/s12974-015-0407-4
    1. Dore-Duffy P, Wencel M, Katyshev V, Cleary K. Chronic mild hypoxia ameliorates chronic inflammatory activity in myelin oligodendrocyte glycoprotein (MOG) peptide induced experimental autoimmune encephalomyelitis (EAE). Adv Exp Med Biol. (2011) 701:165–73. 10.1007/978-1-4419-7756-4_23
    1. Kinsey GR, Huang L, Vergis AL, Li L, Okusa MD. Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney. Kidney Int. (2010) 77:771–80. 10.1038/ki.2010.12
    1. Cho WY, Choi HM, Lee SY, Kim MG, Kim HK, Jo SK. The role of Tregs and CD11c(+) macrophages/dendritic cells in ischemic preconditioning of the kidney. Kidney Int. (2010) 78:981–92. 10.1038/ki.2010.266
    1. Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflamm. (2017) 14:117. 10.1186/s12974-017-0892-8
    1. Liu ZJ, Chen C, Li XR, Ran YY, Xu T, Zhang Y, et al. . Remote ischemic preconditioning-mediated neuroprotection against stroke is associated with significant alterations in peripheral immune responses. CNS Neurosci Ther. (2016) 22:43–52. 10.1111/cns.12448
    1. Wei D, Ren C, Chen X, Zhao H. The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke. PLoS ONE (2012) 7:e30892. 10.1371/journal.pone.0030892
    1. Garcia-Bonilla L, Benakis C, Moore J, Iadecola C, Anrather J. Immune mechanisms in cerebral ischemic tolerance. Front Neurosci. (2014) 8:44. 10.3389/fnins.2014.00044
    1. Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N. Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol. (2003) 13:554–73. 10.1111/j.1750-3639.2003.tb00485.x
    1. Lisak RP, Benjamins JA, Bealmear B, Nedelkoska L, Studzinski D, Retland E, et al. . Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures. J Neuroinflamm. (2009) 6:4. 10.1186/1742-2094-6-4
    1. Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, et al. . Preconditioning in neuroprotection: from hypoxia to ischemia. Prog Neurobiol. (2017) 157:79–91. 10.1016/j.pneurobio.2017.01.001
    1. Speer R, Ratan RR. Hypoxic adaptation in the nervous system: promise for novel therapeutics for acute and chronic neurodegeneration. Adv Exp Med Biol. (2016) 903:221–43. 10.1007/978-1-4899-7678-9_16
    1. Trumbower RD, Jayaraman A, Mitchell GS, Rymer WZ. Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury. Neurorehabil Neural Repair (2012) 26:163–72. 10.1177/1545968311412055
    1. Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology (2014) 82:104–13. 10.1212/01.WNL.0000437416.34298.43
    1. Navarrete-Opazo A, Alcayaga J, Sepúlveda O, Rojas E, Astudillo C. Repetitive intermittent hypoxia and locomotor training enhances walking function in incomplete spinal cord injury subjects: a randomized, triple-blind, placebo-controlled clinical trial. J Neurotrauma (2017) 34:1803–12. 10.1089/neu.2016.4478
    1. Fern RF, Matute C, Stys PK. White matter injury: ischemic and nonischemic. Glia (2014) 62:1780–9. 10.1002/glia.22722
    1. [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT03153553, Ischemic Preconditioning, Exercise Tolerance and Multiple Sclerosis. Available online at: (Accessed March 5, 2018).

Source: PubMed

Подписаться