Two insular regions are differentially involved in behavioral variant FTD and nonfluent/agrammatic variant PPA

Maria Luisa Mandelli, Paolo Vitali, Miguel Santos, Maya Henry, Kelly Gola, Lynne Rosenberg, Nina Dronkers, Bruce Miller, William W Seeley, Maria Luisa Gorno-Tempini, Maria Luisa Mandelli, Paolo Vitali, Miguel Santos, Maya Henry, Kelly Gola, Lynne Rosenberg, Nina Dronkers, Bruce Miller, William W Seeley, Maria Luisa Gorno-Tempini

Abstract

The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) and the behavioral variant frontotemporal dementia (bvFTD) are focal neurodegenerative disorders belonging to the FTD-spectrum clinical syndromes. NfvPPA is characterized by effortful speech and/or agrammatism and left frontal atrophy, while bvFTD is characterized by social-emotional dysfunction often accompanied by right-lateralized frontal damage. Despite their contrasting clinical presentations, both disorders show prominent left anterior insula atrophy. We investigated differential patterns of insular sub-region atrophy in nfvPPA and bvFTD. Based on knowledge of insular connectivity and physiology, we hypothesized that the left superior precentral region of the dorsal anterior insula (SPGI) would be more atrophic in nvfPPA due to its critical role in motor speech, whereas the ventral anterior region would be more atrophied in bvFTD reflecting its known role in social-emotional-autonomic functions. Early stage nfvPPA and bvFTD patients matched for disease severity, age, gender and education and healthy controls participated in the study. Detailed clinical history, neurological examination, neuropsychological screening evaluation, and high-resolution T1-weighted brain magnetic resonance imaging (MRI) were collected. Voxel-based morphometry (VBM) was applied to perform group comparisons across the whole brain and in bilateral insula region of interest (ROI). Correlation analyses between insular sub-region atrophy and relevant clinical features were performed. Whole brain group comparisons between nfvPPA and bvFTD showed the expected predominantly left or right anterior insular atrophy pattern. ROI analysis of bilateral insula showed that the left SPGI was significantly more atrophied in nfvPPA compared to bvFTD, while the bilateral ventral anterior and right dorsal anterior insula sub-regions were more atrophied in bvFTD than nfvPPA. Only left SPGI volume correlated with speech production abilities, while left and right ventral anterior insula volumes correlated with ratings of aberrant eating behavior. These two FTD clinical variants show different patterns of insular sub-region atrophy in the left precentral dorsal anterior and bilateral ventral anterior regions, providing further evidence for the role of these sub-regions in speech production and social-emotional function.

Keywords: Apraxia of speech; Behavioral variant frontotemporal dementia; Insula; Primary progressive aphasia; Speech production; Voxel-based morphometry.

Copyright © 2015 Elsevier Ltd. All rights reserved.

Figures

Figure 1
Figure 1
Results of the whole brain with Voxel based morphometry (VBM). Statistical significance of loss of gray matter volume for nfvPPA compared to controls (upper row). In yellow the significance is corrected at p

Figure 2

Results of the region of…

Figure 2

Results of the region of interest analysis in the insulae with Voxel based…

Figure 2
Results of the region of interest analysis in the insulae with Voxel based morphometry (VBM). Statistical significance of loss of gray matter in the insula in nfvPPA compared to bvFTD are shown in red. Statistical significance of loss of gray matter in the insula in bvFTD compared to nfvPPA are shown in blue. Results are at p

Figure 3

Anatomical picture of the insula…

Figure 3

Anatomical picture of the insula and its sub-regions. The insula is divided by…

Figure 3
Anatomical picture of the insula and its sub-regions. The insula is divided by the central sulcus into an anterior and posterior part. The posterior part is represented in blue and the anterior is divided in a ventral (red) and dorsal (orange) region. The most caudal part of the dorsal insula comprises the superior precentral gyrus (yellow).
Similar articles
Cited by
References
    1. Ackermann H, Riecker A. The contribution of the insula to motor aspects of speech production: a review and a hypothesis. Brain Lang. 2004;89(2):320–328. - PubMed
    1. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113. - PubMed
    1. Baldo JV, Wilkins DP, Ogar J, Willock S, Dronkers NF. Role of the precentral gyrus of the insula in complex articulation. Cortex. 2011;47(7):800–807. - PubMed
    1. Boccardi M, Sabattoli F, Laakso MP, Testa C, Rossi R, Beltramello A, Frisoni GB. Frontotemporal dementia as a neural system disease. Neurobiol Aging. 2005;26(1):37–44. - PubMed
    1. Bozeat S, Gregory CA, Ralph MAL, Hodges JR. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease? Journal of Neurology, Neurosurgery & Psychiatry. 2000;69(2):178–186. - PMC - PubMed
Show all 57 references
Publication types
MeSH terms
LinkOut - more resources
[x]
Cite
Copy Download .nbib .nbib
Format: AMA APA MLA NLM
Figure 2
Figure 2
Results of the region of interest analysis in the insulae with Voxel based morphometry (VBM). Statistical significance of loss of gray matter in the insula in nfvPPA compared to bvFTD are shown in red. Statistical significance of loss of gray matter in the insula in bvFTD compared to nfvPPA are shown in blue. Results are at p

Figure 3

Anatomical picture of the insula…

Figure 3

Anatomical picture of the insula and its sub-regions. The insula is divided by…

Figure 3
Anatomical picture of the insula and its sub-regions. The insula is divided by the central sulcus into an anterior and posterior part. The posterior part is represented in blue and the anterior is divided in a ventral (red) and dorsal (orange) region. The most caudal part of the dorsal insula comprises the superior precentral gyrus (yellow).
Figure 3
Figure 3
Anatomical picture of the insula and its sub-regions. The insula is divided by the central sulcus into an anterior and posterior part. The posterior part is represented in blue and the anterior is divided in a ventral (red) and dorsal (orange) region. The most caudal part of the dorsal insula comprises the superior precentral gyrus (yellow).

References

    1. Ackermann H, Riecker A. The contribution of the insula to motor aspects of speech production: a review and a hypothesis. Brain Lang. 2004;89(2):320–328.
    1. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113.
    1. Baldo JV, Wilkins DP, Ogar J, Willock S, Dronkers NF. Role of the precentral gyrus of the insula in complex articulation. Cortex. 2011;47(7):800–807.
    1. Boccardi M, Sabattoli F, Laakso MP, Testa C, Rossi R, Beltramello A, Frisoni GB. Frontotemporal dementia as a neural system disease. Neurobiol Aging. 2005;26(1):37–44.
    1. Bozeat S, Gregory CA, Ralph MAL, Hodges JR. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease? Journal of Neurology, Neurosurgery & Psychiatry. 2000;69(2):178–186.
    1. Calder AJ, Beaver JD, Davis MH, van Ditzhuijzen J, Keane J, Lawrence AD. Disgust sensitivity predicts the insula and pallidal response to pictures of disgusting foods. Eur J Neurosci. 2007;25(11):3422–8.
    1. Craig AD. How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1):59–70.
    1. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44:2308–2314.
    1. Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493(1):154–166.
    1. Deen B, Pitskel NB, Pelphrey KA. Three systems of insular functional connectivity identified with cluster analysis. Cerebral Cortex. 2011;21(7):1498–1506.
    1. Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE. A core system for the implementation of task sets. Neuron. 2006;50(5):799–812.
    1. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 2007;104(26):11073–8. 26.
    1. Dronkers NF. A new brain region for coordinating speech articulation. Nature. 1996;384(6605):159–161.
    1. Franceschi M, Anchisi D, Pelati O, Zuffi M, Matarrese M, Moresco RM, Perani D. Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration. Ann Neurol. 2005;57(2):216–225.
    1. Goodglass H, Kaplan E. Boston Diagnostic Aphasia Examination (BDAE) Lea and Febiger; Philadelphia: 1983. Distributed by Psychological Assessment Resources, Odessa, FL.
    1. Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ, Johnson JK, Weiner MW, Miller BL. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55(3):335–346.
    1. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–1014.
    1. Grossman M, Mickanin J, Onishi K, Hughes E, D'Esposito M, Ding XS, Alavi A, Reivich M. Progressive Nonfluent Aphasia: Language, Cognitive, and PET Measures Contrasted with Probable Alzheimer's Disease. J Cogn Neurosci. 1996;8(2):135–154.
    1. Hillis AE, Work M, Barker PB, Jacobs MA, Breese EL, Maurer K. Re-examining the brain regions crucial for orchestrating speech articulation. Brain. 2004;127(Pt 7):1479–1487.
    1. Ibach B, Poljansky S, Marienhagen J, Sommer M, Manner P, Hajak G. Contrasting metabolic impairment in frontotemporal degeneration and early onset Alzheimer's disease. Neuroimage. 2004;23(2):739–743.
    1. Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KF, Parisi JE, Hauser MF, Witte RJ, Boeve BF, Knopman DS, Dickson DW, Jack CR, Jr, Petersen RC. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006;129(Pt 6):1385–1398.
    1. Krolak-Salmon P, Hénaff MA, Isnard J, Tallon-Baudry C, Guénot M, Vighetto A, Bertrand O, Mauguière F. An attention modulated response to disgust in human ventral anterior insula. Ann Neurol. 2003;53(4):446–53.
    1. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct. 2010;214(5-6):519–534.
    1. Mandelli ML, Caverzasi E, Binney RJ, Henry ML, Lobach I, Block N, Amirbekian B, Dronkers N, Miller BL, Henry RG, Gorno-Tempini ML. Frontal white matter tracts sustaining speech production in primary progressive aphasia. J Neurosci. 2014;34(29):9754–9767.
    1. Mesulam MM. Slowly progressive aphasia without generalized dementia. Ann Neurol. 1982;11(6):592–598.
    1. Mesulam MM. Primary progressive aphasia. Ann Neurol. 2001;49(4):425–432.
    1. Mesulam MM, Mufson EJ. Insula of the old world monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. J Comp Neurol. 1982;212(1):1–22.
    1. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–2414.
    1. Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A, Ball T. Functional organization of the human anterior insular cortex. Neurosci Lett. 2009;457(2):66–70.
    1. Nanetti L, Cerliani L, Gazzola V, Renken R, Keysers C. Group analyses of connectivity-based cortical parcellation using repeated k-means clustering. Neuroimage. 2009;47(4):1666–77.
    1. Nelson SM, Dosenbach NU, Cohen AL, Wheeler ME, Schlaggar BL, Petersen SE. Role of the anterior insula in task-level control and focal attention. Brain Struct Funct. 2010;214:669–680.
    1. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546–1554.
    1. Nestor PJ, Graham NL, Fryer TD, Williams GB, Patterson K, Hodges JR. Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain. 2003;126(Pt 11):2406–2418.
    1. Ogar JM, Dronkers NF, Brambati SM, Miller BL, Gorno-Tempini ML. Progressive nonfluent aphasia and its characteristic motor speech deficits. Alzheimer Dis Assoc Disord. 2007;21(4):S23–30.
    1. Penfield, Rasmussen . The cerebral cortex of man. A clinical study of localization of function. MacMillan; New York: 1950.
    1. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331(6157):585–589.
    1. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of singe words. J Cogn Neurosci. 1989;1(2):153–170.
    1. Pritchard TC, Macaluso DA, Eslinger PJ. Taste perception in patients with insular cortex lesions. Behav Neurosci. 1999;113(4):663–71.
    1. Rajapakse JC, Giedd JN, Rapoport JL. Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans Med Imaging. 1997;16(2):176–186.
    1. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EG, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–2477.
    1. Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W. Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. Neuroreport. 2000;11(9):1997–2000.
    1. Rogalski E, Cobia D, Harrison TM, Wieneke C, Thompson CK, Weintraub S, Mesulam MM. Anatomy of language impairments in primary progressive aphasia. J Neurosci. 2011;31(9):3344–3350.
    1. Rohrer JD, Warren JD, Modat M, Ridgway GR, Douiri A, Rossor MN, Ourselin S, Fox NC. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology. 2009;72(18):1562–1569.
    1. Rosen HJ, Gorno-Tempini ML, Goldman WP, Perry RJ, Schuff N, Weiner M, Feiwell R, Kramer JH, Miller BL. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology. 2002;58(2):198–208.
    1. Rudenga K, Green B, Nachtigal D, Small DM. Evidence for an integrated oral sensory module in the human anterior ventral insula. Chemical senses. 2010 bjq068.
    1. Schroeter ML, Raczka K, Neumann J, Yves von Cramon D. Towards a nosology for frontotemporal lobar degenerations-a meta-analysis involving 267 subjects. Neuroimage. 2007;36(3):497–510.
    1. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56. 28.
    1. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62(1):42–52. 16.
    1. Seeley WW. Anterior insula degeneration in frontotemporal dementia. Brain Struct Funct. 2010;214(5-6):465–475.
    1. Seeley WW, Crawford R, Rascovsky K, Kramer JH, Weiner M, Miller BL, Gorno-Tempini ML. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch Neurol. 2008;65(2):249–255.
    1. Shinagawa S, Ikeda M, Nestor PJ, Shigenobu K, Fukuhara R, Nomura M, Hodges JR. Characteristics of abnormal eating behaviours in frontotemporal lobar degeneration: a cross-cultural survey. Journal of Neurology, Neurosurgery & Psychiatry. 2009;80(12):1413–1414.
    1. Singer T, Critchley HD, Preuschoff K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci. 2009;13(8):334–340.
    1. Stephani C, Fernandez-Baca Vaca G, Maciunas R, Koubeissi M, Luders HO. Functional neuroanatomy of the insular lobe. Brain Struct Funct. 2011;216(2):137–149.
    1. Tohka J, Zijdenbos A, Evans A. Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage. 2004;23(1):84–97.
    1. von Economo C, Kosinkas GN. Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen. Springer; Berlin: 1925.
    1. Touroutoglou A, Hollenbeck M, Dickerson BC, Feldman Barrett L. Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention. Neuroimage. 2012;60(4):1947–58.
    1. Woolley JD, Gorno-Tempini ML, Seeley WW, Rankin K, Lee SS, Matthews BR, Miller B. Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology. 2007;69(14):1424–33.

Source: PubMed

Подписаться