Physical Activity for Executive Function and Activities of Daily Living in AD Patients: A Systematic Review and Meta-Analysis

Lin Zhu, Long Li, Lin Wang, Xiaohu Jin, Huajiang Zhang, Lin Zhu, Long Li, Lin Wang, Xiaohu Jin, Huajiang Zhang

Abstract

Objectives: The present study aimed to systematically analyze the effects of physical activity on executive function, working memory, cognitive flexibility, and activities of daily living (ADLs) in Alzheimer's disease (AD) patients and to provide a scientific evidence-based exercise prescription. Methods: Both Chinese and English databases (PubMed, Web of Science, the Cochrane Library, EMBASE, VIP Database for Chinese Technical Periodicals, China National Knowledge Infrastructure, and Wanfang) were used as sources of data to search for randomized controlled trials (RCTs) published between January 1980 and December 2019 relating to the effects of physical activity on executive function, working memory, cognitive flexibility, and ADL issues in AD patients. Sixteen eligible RCTs were ultimately included in the meta-analysis. Results: Physical activity had significant benefits on executive function [standard mean difference (SMD) = 0.42, 95% confidence interval (CI) 0.22-0.62, p < 0.05], working memory (SMD = 0.28, 95% CI 0.11-0.45, p < 0.05), cognitive flexibility (SMD = 0.23, 95% CI -0.02 to 0.47, p < 0.01), and ADLs (SMD = 0.68, 95% CI 0.19-1.16, p < 0.05) among AD patients. Subgroup analysis indicated that, for executive function issues, more than 60 min per session for 16 weeks of moderate-to-high-intensity dual-task exercises or multimodal exercise had a greater effect on AD patients. For working memory and cognitive flexibility issues, 60-90 min of moderate-intensity dual-task exercises 1-4 times/week was more effective. For ADL issues, 30-90 min of multimodal exercise at 60-79% of maximal heart rate (MHR) 3-4 times/week had a greater effect on AD patients. Conclusions: Physical activity was found to lead to significant improvements in executive function, working memory, cognitive flexibility, and ADLs in AD patients and can be used as an effective method for clinical exercise intervention in these patients. However, more objective, scientific, and effective RCTs are needed to confirm this conclusion.

Keywords: AD; ADL; executive function; exercise prescription; physical activity.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Zhu, Li, Wang, Jin and Zhang.

Figures

Figure 1
Figure 1
Flowchart of study selection.
Figure 2
Figure 2
Funnel plot of publication bias for executive function.
Figure 3
Figure 3
Effect of physical activity on executive function.
Figure 4
Figure 4
Funnel plot of publication bias for working memory.
Figure 5
Figure 5
Effect of physical activity on working memory.
Figure 6
Figure 6
Funnel plot of publication bias for cognitive flexibility.
Figure 7
Figure 7
Effect of physical activity on cognitive flexibility.
Figure 8
Figure 8
Funnel plot of publication bias for ADLs.
Figure 9
Figure 9
Effect of physical activity on ADLs.

References

    1. Allal G., Annweiler C., Blumen H. M., Callisaya M. L., De-Cock A. M., Kressig R. W., et al. . (2015). Gait phenotype from mild cognitive impairment to moderate dementia: results from the GOOD initiative. Eur. J. Neurol. 23, 527–541. 10.1111/ene.12882
    1. Andrade L. P., Gobb L. T. B., Coelh F. G. M., Christofolett G. (2013). Benefifits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with alzheimer's disease: a controlled trial. JAGS 61, 1919–1926. 10.1111/jgs.12531
    1. Avilla R., Miotto E. (2002). Funcoes executivas no envelhecimento normal e na doenca de Alzheimer. J. Bras. Psiquiatr. 52, 53–63. Available online at:
    1. Baker L. D., Fran L. L., Foster-Schuber K., Gree P. S., Wilkinso C. W., McTierna A. (2010). Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch. Neurol. 67, 71–79. 10.1001/archneurol.2009.307
    1. Bell-McGinty S., Podell K., Franzen M., Baird A. D., Williams M. J. (2002). Standard measures of executive function in predicting instrumental activities of daily living in older adults. Int. J. Geriatr. Psychiatry 17, 828–834. 10.1002/gps.646
    1. Boyle P. A., Mallo P. F., Sallowa S., Cahn-Weine D. A., Cohe R., Cumming J. L. (2003). Executive dysfunction and apathy predict functional impairment in alzheimer disease. J. Geriatr. Psychiatry 11, 214–221. 10.1097/00019442-200303000-00012
    1. Cahn-Weiner D. A., Boyle P. A., Malloy P. F. (2002). Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals. Appl. Neuropsychol. 9, 187–191. 10.1207/S15324826AN0903_8
    1. Chang C. H., Wan W., Zh Y., Yan S. Y. (2015). Study on the intervention of aerobic training on alzheimer's disease. Chin. J. Rehabil. Med. 11, 1131–1134. 10.3969/j.issn.1001-1242.2015.11.007
    1. Coelho F., Vital T. M., Stei A. M., Arante F. J., Rued A. V., Camarin R. (2014). Acute aerobic exercise increases brain derived neurotrophic factor levels in elderly with alzheimer's disease. J. Alz. Dis. 39, 401–408. 10.3233/JAD-131073
    1. Coelho F. G. M., Andrad L. P., Pedros R. V. (2012). Multimodal exercise intervention improves frontal cognitive functions and gait in alzheimer's disease: a controlled trial. Geriatr. Gerontol. Int. 4, 1–6. 10.1111/j.1447-0594.2012.00887.x
    1. Coelho F. G. M., Galduróz-Santos R. F., Gobbi S., Stella F. (2009). Atividade físicasistematizada e desempenho cognitivo com demência de alzheimer: uma revisão sistemática. Revis. Brasileira Psiquiatria. 31, 163–170. 10.1590/S1516-44462009000200014
    1. Cohen-Mansfifield J., Mintze J. E. (2005). Time for change: the role of nonpharmacological interventions in treating behavior problems in nursing home residents with dementia. Alzheimer Dis. Assoc. Disord. 19, 37–40. 10.1097/01.wad.0000155066.39184.61
    1. Davenport M. H., Hogan D. B., Eskes G. A., Longman R. S., Poulin M. J. (2012). Cerebrovascular reserve: the link betweenfifit ness and cognitive function? Exerc. Sport Sci. Rev. 40, 153–158. 10.1097/JES.0b013e3182553430
    1. Deslandes A., Moraes H., Ferreira C., Veiga H., Silveira H., Mouta R., et al. (2009). Exercise and mental health: many reasons to move. Neuropsychobiology 59, 191–198. 10.1159/000223730
    1. Eggermont L., Swaa D., Luite P., Scherde E. (2006). Exercise, cognition and alzheimer's disease: more is not necessarily better. Neurosci. Biobehav. Rev. 30, 562–575. 10.1016/j.neubiorev.2005.10.004
    1. El-Kader S. M., Al-Jiffr O. H. (2016). Aerobic exercise improves quality of life, psychological well-being and systemic inflammation in subjects with alzheimer's disease. Afr. Health Sci. 16, 1045–1055. 10.4314/ahs.v16i4.22
    1. Erickson K. I., Vos M. W., Prakas R. S. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 108, 3017–3022. 10.1073/pnas.1015950108
    1. Erickson K. I., Weinstein A. M., Lopez O. L. (2012). Physical activity, brain plasticity and alzheimer's disease. Arch. Med. Res. 43, 615–621. 10.1016/j.arcmed.2012.09.008
    1. Farina F., Rusted J., Tabet N. (2014). The effect of exercise interventions on cognitive outcome in alzheimer's disease: a systematic review. Int. Psychogeriatr. 26, 9–18. 10.1017/S1041610213001385
    1. Fonte C., Smani S., Pedrinoll A., Munari D., Gandolf M., Picell A. (2019). Comparison between physical and cognitive treatment in patients with MCI and alzheimer's disease. Aging 5, 3138–3155. 10.18632/aging.101970
    1. Foster P. P., Rosenblatt K. P., Kuljiš R. O. (2011). Exercise-induced cognitive plasticity, implications for mild cognitive impairment and alzheimer's disease. Front. Neurol. 2:28. 10.3389/fneur.2011.00028
    1. Hamer M., Chid Y. (2009). Physical activity and risk of neurodegenerative disease. A systematic review of prospective evidence. Psychol. Med. 39, 3–11. 10.1017/S0033291708003681
    1. Herholz S. C., Herhol R. S., Herhol K. (2013). Non-pharmacological interventions and neuroplasticity in early stage alzheimer's disease. Expert Rev. Neurother. 13, 1235–1245. 10.1586/14737175.2013.845086
    1. Higgins J. P. T., Thompso S. G., Deek J. J., Altma D. G. (2003). Measuring inconsistency in metaanalyses. BMJ Br. Med. J. 327, 557–560. 10.1136/bmj.327.7414.557
    1. Hoffmanna K., Sobolb N. A., Frederiksena K. S., Beyerb N., Vogela A., Vestergaard K. (2016). Moderate-to-high intensity physical exercise in patients with alzheimer's disease: a randomized controlled trial. J. Alz. Dis. 50, 443–453. 10.3233/JAD-150817
    1. Holthoff V. A., Marschne K., Schar M., Stedin J., Meye S. (2015). Effects of physical activity training in patients with alzheimer's dementia: results of a pilot RCT study. PLoS ONE 4:e0121478. 10.1371/journal.pone.0121478
    1. Jekel K., Damian M., Wattmo C. (2015). Mild cognitive impairment and defificits in instrumental activities of daily living: a systematic review. Alzheimer Res. Ther. 7:17. 10.1186/s13195-015-0099-0
    1. Jin X. H., Wan L., Li S. J., Zh L., Loprinz D., Fa X. (2020). The impact of mind-body exercises on motor function, depressive symptoms, and quality of life in parkinso's disease: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health. 17:31. 10.3390/ijerph17010031
    1. Kempermann G., Fabe K., Ehninge D., Bab H., Leal-Galici P., Garth A. (2010). Why and how physical activity promotes experience-induced brain plasticity. Front. Neurosci. 4:189. 10.3389/fnins.2010.00189
    1. Kivipelto M., Ngand T., Fratiglion L. (2005). Obesity and vascular risk factors at midlife and the risk of dementia and alzheimers disease. Arch. Neurol. 62, 1556–60. 10.1001/archneur.62.10.1556
    1. Kramer A. F., Erickson K. I. (2007). Capitalizing on cortical plasticity: inflfluence of physical activity on cognition and brain function. Trends Cogn. Sci. 11, 342–348. 10.1016/j.tics.2007.06.009
    1. Lam L. C., Cha R. C., Won B. M., Fun A. W., Lu V. W., Ta C. C. (2011). Interim follow-up of a randomized controlled trial comparing Chinese style mind body (Tai Chi) and stretching exercises on cognitive function in subjects at risk of progressive cognitive decline. Int. J. Geriatr. Psychiatry 26, 733–740. 10.1002/gps.2602
    1. Lautenschlager N. T., Co K. L., Flicke L., Foste J. K., Bockxmee F. M., Xia J. (2008). Effect of physical activity on cognitive function in older adults at risk for alzheimer disease: a randomized trial. J. Am. Med. Assoc. 300, 1027–1037. 10.1001/jama.300.9.1027
    1. Lazowski D. A., Ecclestone N. A., Myers A. M. (1999). A randomized outcome evaluation of group exercise programs in long-term care institutions. J. Gerontol. A Biol. Sci. Med. Sci. 54A, M621–M628. 10.1093/gerona/54.12.M621
    1. Lista I., Sorrentin G. (2009). Biological mechanisms of physical activity in preventing cognitive decline. Cell. Mol. Neurobiol. 30, 493–503. 10.1007/s10571-009-9488-x
    1. Liu S. J., Ren Z. B., Wang L., Wei G. X., Zou L. Y. (2018). Mind-body (Baduanjin) exercise prescription for chronic obstructive pulmonary disease: a systematic review with meta-analysis. Int. J. Environ. Res. Public Health. 15:1830 10.3390/ijerph15091830
    1. Maffei L., Picano E., Andreassi M. G. (2017). Train the brain consortium. Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the train the brain study. Sci. Rep. 7:39471 10.1038/srep39471
    1. Miyake A., Friedma N. P. (2012). The nature and organization of individual differences in executive functions: four general conclusions. Curr. Dir. Psychol. Sci. 21, 8–14. 10.1177/0963721411429458
    1. Morley J. E., Silve A. J. (1995). Nutritional issues in nursing home care. Ann. Intern. Med. 123, 850–859. 10.7326/0003-4819-123-11-199512010-00008
    1. Morris J. K., Vidon E. D., Johnson D. K., Scive A. V., Mahnke J. D., Hone R. A., et al. . (2017). Aerobic exercise for alzheimer's disease: a randomized controlled pilot trial. PLoS ONE 2:e0170547. 10.1371/journal.pone.0170547
    1. Norton S., Matthews F. E., Barnes D. E., Yaffe K., Brayne C. (2014). Potential for primary prevention of alzheimer's disease: an analysis of population-based data. Lancet Neurol. 13, 788–794. 10.1016/S1474-4422(14)70136-X
    1. Ohman H., Savikk N., Strandber T. E., Kautiaine H., Raivi M. M. (2016). Effects of exercise on cognition: the finnish alzheimer disease exercise trial: a randomized, controlled trial. JAGS 64, 731–738. 10.1111/jgs.14059
    1. PEDro-scale (2010). Available online at: (accessed August 4, 2010).
    1. Pedroso R. V., Ayán C., Frag F. G., Silv T. M. V. (2017). Effects of functional-task training on older adults with alzheimer's disease. J. Aging Phys. Act. 26, 97–105. 10.1123/japa.2016-0147
    1. Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C. P. (2013). The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 9, 63–75.e2. 10.1016/j.jalz.2012.11.007
    1. Radak Z., Hart N., Sarga L. (2010). Exercise plays a preventive role against alzheimer's disease. J. Alz. Dis. 20, 777–783. 10.3233/JAD-2010-091531
    1. Razani J., Casa R., Won J. T., Lu P., Aless C., Josephso K. (2007). Relationship between executive functioning and activities of daily living in patients with relatively mild dementia. Appl. Neuropsychol. 14, 208–214. 10.1080/09084280701509125
    1. Reitz C., Brayne C., Mayeux R. (2011). Epidemiology of alzheimer disease. Nat. Rev. Neurol. 7, 137–152. 10.1038/nrneurol.2011.2
    1. Rolland Y., Pillar F., Klapouszcza A., Reynis E. (2017). Exercise program for nursing home residents with alzheimer's disease: a 1-year randomized, controlled trial. J. Am. Geriatr. Soc. 55, 158–165. 10.1111/j.1532-5415.2007.01035.x
    1. Royall D. R., Chiodo L. K., Polk M. J. (2000). Correlates of disability among elderly retirees with “subclinical” cognitive impairment. J. Gerontol. A Biol. Sci. Med. Sci. 55, M541–M546. 10.1093/gerona/55.9.M541
    1. Sakuma K., Yamaguch A. (2011). The recent understanding of the neurotrophin's role in skeletal muscle adaptation. J. Biomed. Biotechnol. 2011:201696. 10.1155/2011/201696
    1. Scherder E. J., Van-Paassche J., Deije J. B., Van Der Knokk S., Orlebek J. F. K., Burger I. (2005). Physical activity and executive functions in the elderly with mild cognitive impairment. Aging Ment. Health 9, 272–280. 10.1080/13607860500089930
    1. Silvaa F. O., Ferreira J. V., Plácido J. (2019). Three months of multimodal training contributes to mobility and executive function in elderly individuals with mild cognitive impairment, but not in those with alzheimer's disease: a randomized controlled trial. Maturitas 126, 28–33. 10.1016/j.maturitas.2019.04.217
    1. Sofifi F., Valecch D., Bacc D. (2011). Physical activity and risk of cognitive decline. A meta-analysis of prospective studies. J. Intern. Med. 269, 107–117. 10.1111/j.1365-2796.2010.02281.x
    1. Tan C. C., Yu J. T., Wang H. F., Tan M. S., Meng X. F., Wang C., et al. . (2014). Effificacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of alzheimer's disease: a systematic review and meta-analysis. J. Alzheimers Dis. 41, 615–631. 10.3233/JAD-132690
    1. Tootsa A., Littbran H., Bostro G., Hornste C., Holmberg H. (2017). Effects of exercise on cognitive function in older people with dementia: a randomized controlled trial. J. Alz. Dis. 60, 323–332. 10.3233/JAD-170014
    1. Uffelen J. G., Chinapa M. J., Mechele W., Hopman-Roc M. (2008). Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomised controlled trial. Br. J. Sports Med. 42, 344–351. 10.1136/bjsm.2007.044735
    1. Venturelli M., Scarsin R., Schen F. (2011). Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. J. Alzheimers Dis. 26, 381–388. 10.1177/1533317511418956
    1. Vidoni E. D., Perale J., Alshehr M., Gile A. M., Siengsuko C. F. (2017). Aerobic exercise sustains performance of instrumental activities of daily living in early-stage alzheimer disease. J. Geriatr. Phys. Ther. 42, 1–6. 10.1519/JPT.0000000000000172
    1. Vreugdenhill A., Cannel J., Davie A., Raza G. (2012). A community-based exercise programme to improve functional ability in people with alzheimer's disease: a randomized controlled trial. Scand. J. Caring Sci. 26, 12–19. 10.1111/j.1471-6712.2011.00895.x
    1. Wilbur J., Marquez D. X., Fogg L., Wilson R. S., Staffifileno B. A., Hoyem R. L., et al. (2012). The relationship between physical activity and cognition in older latinos. J. Gerontol. B Psychol. Sci. Soc. Sci. 67, 525–534. 10.1093/geronb/gbr137
    1. World Health Organization Physical Activity Older Adults (2017). Available online at: (accessed January 18, 2017).
    1. Yaari R., Bloom J. C. (2007). Alzheimer's disease. Semin. Neurol. 27, 32–41. 10.1055/s-2006-956753
    1. Zou L. Y., Han J., Li X. C., Yeung A., Hui S. C., Tsang W. N., et al. . (2019). The effects of tai chi on lower limb proprioception in adults aged over 55: a systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 100, 1102–1113. 10.1016/j.apmr.2018.07.425

Source: PubMed

Подписаться