Shifts of Faecal Microbiota During Sporadic Colorectal Carcinogenesis

Giorgia Mori, Simone Rampelli, Beatrice Silvia Orena, Claudia Rengucci, Giulia De Maio, Giulia Barbieri, Alessandro Passardi, Andrea Casadei Gardini, Giovanni Luca Frassineti, Stefano Gaiarsa, Alessandra M Albertini, Guglielmina Nadia Ranzani, Daniele Calistri, Maria Rosalia Pasca, Giorgia Mori, Simone Rampelli, Beatrice Silvia Orena, Claudia Rengucci, Giulia De Maio, Giulia Barbieri, Alessandro Passardi, Andrea Casadei Gardini, Giovanni Luca Frassineti, Stefano Gaiarsa, Alessandra M Albertini, Guglielmina Nadia Ranzani, Daniele Calistri, Maria Rosalia Pasca

Abstract

Gut microbiota has been implicated in the etiopathogenesis of colorectal cancer. The development of colorectal cancer is a multistep process by which healthy epithelium slowly develops into preneoplastic lesions, which in turn progress into malignant carcinomas over time. In particular, sporadic colorectal cancers can arise from adenomas (about 85% of cases) or serrated polyps through the "adenoma-carcinoma" or the "serrated polyp-carcinoma" sequences, respectively. In this study, we performed 16 S rRNA gene sequencing of bacterial DNA extracted from faecal samples to compare the microbiota of healthy subjects and patients with different preneoplastic and neoplastic lesions. We identified putative microbial biomarkers associated with stage-specific progression of colorectal cancer. In particular, bacteria belonging to the Firmicutes and Actinobacteria phyla, as well as members of the Lachnospiraceae family, proved to be specific of the faecal microbiota of patients with preneoplastic lesions, including adenomas and hyperplastic polyps. On the other hand, two families of the Proteobacteria phylum, Alcaligeneaceae and Enterobacteriaceae, with Sutterella and Escherichia/Shigella being the most representative genera, appeared to be associated with malignancy. These findings, once confirmed on larger cohorts of patients, can represent an important step towards the development of more effective diagnostic strategies.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Evaluation of α-diversity in the 5 groups of patients and controls. (A) Chao1 measure of microbial richness; (B) Observed OTUs; (C) Phylogenetic diversity.
Figure 2
Figure 2
Relative abundance of the main bacterial phyla in faecal microbiota of 7 groups of subjects. Histograms based on the proportion of OTUs per average of each group.
Figure 3
Figure 3
Bacterial taxa differentiate 3 clusters: ADK and ADK patients; HP and HRA patients; LRA patients and H subjects. (A) PCoA based on Unweighted UniFrac distances; (B) Superimposition of bacterial genera on the PCoA plot.
Figure 4
Figure 4
Bacterial taxa abundance differentiates ADK from HP, LRA, HRA and ADK-T patients and healthy subjects. (A) PCoA based on Weighted UniFrac distances; (B) Superimposition of microbial genera on the PCoA plot.
Figure 5
Figure 5
Range of microbial diversity in the investigated groups.
Figure 6
Figure 6
Putative faecal biomarkers of sporadic CRC cancerogenesis.

References

    1. WHO. World Cancer Report 2014 (2014).
    1. Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012;5:19–27.
    1. Calderwood AH, Lasser KE, Roy HK. Colon adenoma features and their impact on risk of future advanced adenomas and colorectal cancer. World J Gastrointest Oncol. 2016;15:826–834. doi: 10.4251/wjgo.v8.i12.826.
    1. Walther A, et al. Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer. 2009;9:489–99. doi: 10.1038/nrc2645.
    1. Cottrell S, Bicknell D, Kaklamanis L, Bodmer WF. Molecular analysis of APC mutations in familial adenomatous polyposis and sporadic colon carcinomas. Lancet. 1992;340:626–630. doi: 10.1016/0140-6736(92)92169-G.
    1. Hokazono K, et al. A CpG island methylator phenotype of colorectal cancer that is contiguous with conventional adenomas, but not serrated polyps. Oncol. Lett. 2014;8:1937–1944. doi: 10.3892/ol.2014.2430.
    1. Setaffy L, Langner C. Microsatellite instability in colorectal cancer: clinicopathological significance. Pol. J. Pathol. 2015;66:203–218. doi: 10.5114/pjp.2015.54953.
    1. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767. doi: 10.1016/0092-8674(90)90186-I.
    1. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138:2059–2072. doi: 10.1053/j.gastro.2009.12.065.
    1. Vogelstein B, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–532. doi: 10.1056/NEJM198809013190901.
    1. Rex DK, et al. Colorectal Cancer Screening: Recommendations for Physicians and Patients From the U.S. Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2017;153:307–323. doi: 10.1053/j.gastro.2017.05.013.
    1. Yamane L, Scapulatempo-Neto C, Reis RM, Guimarães DP. Serrated pathway in colorectal carcinogenesis. World J Gastroenterol. 2014;20:2634–2640. doi: 10.3748/wjg.v20.i10.2634.
    1. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138:2088–2100. doi: 10.1053/j.gastro.2009.12.066.
    1. Huang CS, O’brien MJ, Yang S, Farraye FA. Hyperplastic polyps, serrated adenomas, and the serrated polyp neoplasia pathway. Am J Gastroenterol. 2004;99:2242–2255. doi: 10.1111/j.1572-0241.2004.40131.x.
    1. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317–328. doi: 10.1016/j.chom.2014.02.007.
    1. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 2012;10:575–582. doi: 10.1038/nrmicro2819.
    1. Wang T, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6:320–329. doi: 10.1038/ismej.2011.109.
    1. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 486, 207–14, 10.1038/nature11234 (2012).
    1. Gagnière J, et al. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 2016;22:501–518. doi: 10.3748/wjg.v22.i2.501.
    1. Yu YN, Fang JY. Gut microbiota and colorectal cancer. Gastrointest Tumors. 2015;2:26–32. doi: 10.1159/000380892.
    1. Nakatsu G, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015;6:8727. doi: 10.1038/ncomms9727.
    1. Lu Y, et al. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci Rep. 2016;6:26337. doi: 10.1038/srep26337.
    1. Russo E, et al. Preliminary Comparison of Oral and Intestinal Human Microbiota in Patients with Colorectal Cancer: A Pilot Study. Front Microbiol. 2018;8:2699. doi: 10.3389/fmicb.2017.02699.
    1. Shang FM, Liu HL. Fusobacterium nucleatum and colorectal cancer: A review. World J Gastrointest Oncol. 2018;10:71–81. doi: 10.4251/wjgo.v10.i3.71.
    1. Baxter NT, Zackular JP, Chen GY, Schloss PD. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome. 2014;2:20. doi: 10.1186/2049-2618-2-20.
    1. Eklöf V, et al. Cancer-associated fecal microbial markers in colorectal cancer detection. Int J Cancer. 2017;141:2528–2536. doi: 10.1002/ijc.31011.
    1. Wu GD, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–108. doi: 10.1126/science.1208344.
    1. Schnorr SL, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654. doi: 10.1038/ncomms4654.
    1. Chen T, et al. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep. 2017;7:2594. doi: 10.1038/s41598-017-02995-4.
    1. Koh A, et al. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165:1332–1345. doi: 10.1016/j.cell.2016.05.041.
    1. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr. Rev. 2012;70:S38–S44. doi: 10.1111/j.1753-4887.2012.00493.x.
    1. Geuking MB, Köller Y, Rupp S, McCoy KD. The interplay between the gut microbiota and the immune system. Gut Microb. 2014;5:411–418. doi: 10.4161/gmic.29330.
    1. Chung H, Kasper DL. Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol. 2010;22:455–460. doi: 10.1016/j.coi.2010.06.008.
    1. Krishnan S, Alden N, Lee K. Pathways and functions of gut microbiota metabolism impacting host physiology. Curr Opin Biotechnol. 2015;36:137–145. doi: 10.1016/j.copbio.2015.08.015.
    1. Nagao-Kitamoto H, Kitamoto S, Kuffa P, Kamada N. Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res. 2016;14:127–138. doi: 10.5217/ir.2016.14.2.127.
    1. Tomasello G, et al. Dismicrobism in inflammatory bowel disease and colorectal cancer: Changes in response of colocytes. World J. Gastroenterol. 2014;20:18121–18130. doi: 10.3748/wjg.v20.i48.18121.
    1. Wu N, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66:462–470. doi: 10.1007/s00248-013-0245-9.
    1. Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep. 2014;16:1–9. doi: 10.1007/s11912-014-0406-0.
    1. Wang T, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6:320–329. doi: 10.1038/ismej.2011.109.
    1. Feng Q, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 2015;6:6528. doi: 10.1038/ncomms7528.
    1. Hale VL, et al. Shifts in the fecal microbiota associated with adenomatous polyps. Cancer Epidemiol. Biomarkers Prev. 2017;26:85–94. doi: 10.1158/1055-9965.EPI-16-0337.
    1. Peters BA, et al. The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome. 2016;4:69. doi: 10.1186/s40168-016-0218-6.
    1. Rosenberg DW, et al. Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans. Cancer Res. 2007;67:3551–3554. doi: 10.1158/0008-5472.CAN-07-0343.
    1. AIOM (Associazione Italiana di Oncologia Medica). I numeri del cancro in italia 2017. (2017).
    1. García-Peña C, Álvarez-Cisneros T, Quiroz-Baez R, Friedland RP. Microbiota and Aging. A Review and Commentary. Arch Med Res. 2017;48:681–689. doi: 10.1016/j.arcmed.2017.11.005.
    1. Biagi E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5:e10667. doi: 10.1371/journal.pone.0010667.
    1. Carroll IM, Ringel-Kulka T, Siddle JP, Klaenhammer TR, Ringel Y. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One. 2012;7:e46953. doi: 10.1371/journal.pone.0046953.
    1. Fouhy F, et al. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS One. 2015;10:e0119355. doi: 10.1371/journal.pone.0119355.
    1. Panek M, et al. Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci Rep. 2018;8:5143. doi: 10.1038/s41598-018-23296-4.
    1. Sagheddu V, Patrone V, Miragoli F, Puglisi E, Morelli L. Infant early gut colonization by Lachnospiraceae: high frequency of Ruminococcus gnavus. Front Pediatr. 2016;4:57. doi: 10.3389/fped.2016.00057.
    1. Dinh DM, et al. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis. 2015;211:19–27. doi: 10.1093/infdis/jiu409.
    1. Kaakoush NO. Insights into the Role of Erysipelotrichaceae in the Human Host. Front Cell Infect Microbiol. 2015;5:84. doi: 10.3389/fcimb.2015.00084.
    1. Hiippala K, Kainulainen V, Kalliomäki M, Arkkila P, Satokari R. Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella spp. Front Microbiol. 2016;7:1706. doi: 10.3389/fmicb.2016.01706.
    1. Tomkovich S, et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 2017;77:2620–2632. doi: 10.1158/0008-5472.CAN-16-3472.
    1. Roy, S., & Trinchieri, G. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer. In press; 10.1038/nrc.2017.13 (2017).
    1. Montassier E, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment. Pharmacol. Ther. 2015;42:515–528. doi: 10.1111/apt.13302.
    1. Sze MA, Baxter NT, Ruffin MT, 4th, Rogers MAM, Schloss PD. Normalization of the microbiota in patients after treatment for colonic lesions. Microbiome. 2017;5:150. doi: 10.1186/s40168-017-0366-3.
    1. Flemer B, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017;66:633–643. doi: 10.1136/gutjnl-2015-309595.
    1. NCCN Guidelines. (2018).
    1. Olson J, Whitney DH, Durkee K, Shuber AP. DNA stabilization is critical for maximizing performance of fecal DNA-based colorectal cancer tests. Diagn Mol Pathol. 2005;14:183–91. doi: 10.1097/01.pas.0000176768.18423.7e.
    1. Caporaso JG, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME journal. 2012;6:1621–1624. doi: 10.1038/ismej.2012.8.
    1. Segata N, et al. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers. Sci Rep. 2016;6:24207. doi: 10.1038/srep24207.
    1. Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303.

Source: PubMed

Подписаться