Neural Processes Underlying Mirror-Induced Visual Illusion: An Activation Likelihood Estimation Meta-Analysis

Umar Muhammad Bello, Georg S Kranz, Stanley John Winser, Chetwyn C H Chan, Umar Muhammad Bello, Georg S Kranz, Stanley John Winser, Chetwyn C H Chan

Abstract

Introduction: Neuroimaging studies on neural processes associated with mirror-induced visual illusion (MVI) are growing in number. Previous systematic reviews on these studies used qualitative approaches. Objective: The present study conducted activation likelihood estimation (ALE) meta-analysis to locate the brain areas for unfolding the neural processes associated with the MVI. Method: We searched the CINAHL, MEDLINE, Scopus, and PubMed databases and identified eight studies (with 14 experiments) that met the inclusion criteria. Results: Contrasting with a rest condition, strong convergence in the bilateral primary and premotor areas and the inferior parietal lobule suggested top-down motor planning and execution. In addition, convergence was identified in the ipsilateral precuneus, cerebellum, superior frontal gyrus, and superior parietal lobule, clusters corresponding to the static hidden hand indicating self-processing operations, somatosensory processing, and motor control. When contrasting with an active movement condition, additional substantial convergence was revealed in visual-related areas, such as the ipsilateral cuneus, fusiform gyrus, middle occipital gyrus (visual area V2) and lingual gyrus, which mediate basic visual processing. Conclusions: To the best of our knowledge, the current meta-analysis is the first to reveal the visualization, mental rehearsal and motor-related processes underpinning the MVI and offers theoretical support on using MVI as a clinical intervention for post-stroke patients.

Keywords: activation likelihood estimation; cuneus; meta-analysis; mirror-induced visual illusion; premotor.

Copyright © 2020 Bello, Kranz, Winser and Chan.

Figures

Figure 1
Figure 1
Study flowchart.
Figure 2
Figure 2
Overall meta-analytic results showing convergence of brain areas found to associate with the MVI condition when contrasted with the baseline/resting condition (13 experiments with 152 foci). Note: The MVI tasks involved moving left hand (right-left flipped coordinates for moving right hand). Labels: CB-PL, cerebellum-posterior lobe; CB-AL, cerebellum-anterior lobe; S1, primary somatosensory cortex; M1/PMC, primary motor cortex/premotor cortex; SFG, superior frontal gyrus; IPL, inferior parietal lobulem; SPL, superior parietal lobule; PreC, precuneus.
Figure 3
Figure 3
ALE meta-analytic results showing convergent brain clusters as a result of contrast between MVI condition with active hand movement without mirror visual feedback (30 foci). Note: The MVI tasks involved movements of the left hand (right–left flipped coordinates for right hand movements). Labels: CB-PL, cerebellum-posterior lobe; STG, superior temporal gyrus; FG, fusiform gyrus; MOG, middle occipital gyrus.

References

    1. Altschuler E. L., Wisdom S. B., Stone L., Foster C., Galasko D., Llewellyn D. M. E., et al. . (1999). Rehabilitation of hemiparesis after stroke with a mirror. Lancet 353, 2035–2036. 10.1016/S0140-6736(99)00920-4
    1. Arya K. N. (2016). Underlying neural mechanisms of mirror therapy: implications for motor rehabilitation in stroke. Neurol. India 64:38. 10.4103/0028-3886.173622
    1. Bähr F., Ritter A., Seidel G., Puta C., Gabriel H. H., Hamzei F. (2018). Boosting the motor outcome of the untrained hand by action observation: mirror visual feedback, video therapy, or both combined-what is more effective? Neural Plast. 2018:10. 10.1155/2018/8369262
    1. Bhasin A., Srivastava M. P., Kumaran S. S., Bhatia R., Mohanty S. (2012). Neural interface of mirror therapy in chronic stroke patients: a functional magnetic resonance imaging study. Neurol. India 60:570. 10.4103/0028-3886.105188
    1. Boisgueheneuc Fd., Levy R., Volle E. (2006). Functions of the left superior frontal gyrus in humans: a lesion study. Brain 129, 3315–3328. 10.1093/brain/awl244
    1. Broderick P., Horgan F., Blake C., Ehrensberger M., Simpson D., Monaghan K. (2018). Mirror therapy for improving lower limb motor function and mobility after stroke: a systematic review and meta-analysis. Gait Posture 63, 208–220. 10.1016/j.gaitpost.2018.05.017
    1. Caspers S., Zilles K., Laird A. R., Eickhoff S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50, 1148–1167. 10.1016/j.neuroimage.2009.12.112
    1. Cavanna A. E., Trimble M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583. 10.1093/brain/awl004
    1. Chaminade T., Decety J. (2002). Leader or follower? Involvement of the inferior parietal lobule in agency. Neuroreport 13, 1975–1978. 10.1097/00001756-200210280-00029
    1. Chancel M., Brun C., Kavounoudias A., Guerraz M. (2016). The kinaesthetic mirror illusion: how much does the mirror matter? Exp. Brain Res. 234, 1459–1468. 10.1007/s00221-015-4549-5
    1. Chouinard P. A., Paus T. (2006). The primary motor and premotor areas of the human cerebral cortex. The neurosci. 12, 143–152. 10.1177/1073858405284255
    1. Debnath R., Franz E. A. (2016). Perception of hand movement by mirror reflection evokes brain activation in the motor cortex contralateral to a non-moving hand. Cortex 81, 118–125. 10.1016/j.cortex.2016.04.015
    1. Deconinck F. J., Smorenburg A. R., Benham A., Ledebt A., Feltham M. G., Savelsbergh G. J. (2015). Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehab. Neural Repair. 29, 349–361. 10.1177/1545968314546134
    1. Diers M., Christmann C., Koeppe C., Ruf M., Flor H. (2010). Mirrored, imagined and executed movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. PAIN® 149, 296–304. 10.1016/j.pain.2010.02.020
    1. Diers M., Kamping S., Kirsch P., Rance M., Bekrater-Bodmann R., Foell J., et al. . (2015). Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging. Brain Res. 1594, 173–182. 10.1016/j.brainres.2014.11.001
    1. Dohle C., Kleiser R., Seitz R. J., Freund H.-J. (2004). Body scheme gates visual processing. J. Neurophysiol. 91, 2376–2379. 10.1152/jn.00929.2003
    1. Dohle C., Stephan K., Valvoda J., Hosseiny O., Tellmann L., Kuhlen T., et al. . (2011). Representation of virtual arm movements in precuneus. Exp. Brain Res. 208, 543–555. 10.1007/s00221-010-2503-0
    1. Eickhoff S. B., Bzdok D., Laird A. R., Kurth F., Fox P. T. (2012). Activation likelihood estimation meta-analysis revisited. Neuroimage 59, 2349–2361. 10.1016/j.neuroimage.2011.09.017
    1. Eickhoff S. B., Laird A. R., Grefkes C., Wang L. E., Zilles K., Fox P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30, 2907–2926. 10.1002/hbm.20718
    1. Eickhoff S. B., Nichols T. E., Laird A. R., Hoffstaedter F., Amunts K., Fox P. T., et al. . (2016). Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage 137, 70–85. 10.1016/j.neuroimage.2016.04.072
    1. Eickhoff S. B., Stephan K. E., Mohlberg H., Grefkes C., Fink G. R., Amunts K., et al. . (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335. 10.1016/j.neuroimage.2004.12.034
    1. Eng K., Siekierka E., Pyk P., Chevrier E., Hauser Y., Cameirao M., et al. . (2007). Interactive visuo-motor therapy system for stroke rehabilitation. Med. Biol. Eng. Comput. 45, 901–907. 10.1007/s11517-007-0239-1
    1. Farrer C., Frith C. D. (2002). Experiencing oneself vs. another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15, 596–603. 10.1006/nimg.2001.1009
    1. Favre I., Zeffiro T. A., Detante O., Krainik A., Hommel M., Jaillard A. (2014). Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis. Stroke 45, 1077–1083. 10.1161/STROKEAHA.113.003168
    1. Felician O., Romaiguére P., Anton J. L., Nazarian B., Roth M., Poncet M. (2004). The role of human left superior parietal lobule in body part localization. Ann. Neurol. 55, 749–751. 10.1002/ana.20109
    1. Fourkas A. D., Avenanti A., Urgesi C., Aglioti S. M. (2006). Corticospinal facilitation during first and third person imagery. Exp. Brain Res. 168, 143–151. 10.1007/s00221-005-0076-0
    1. Fritzsch C., Wang J., dos Santos L. F., Mauritz K.-H., Brunetti M., Dohle C. (2014). Different effects of the mirror illusion on motor and somatosensory processing. Restor. Neurol. Neurosci. 32, 269–280. 10.3233/RNN-130343
    1. Fukumura K., Sugawara K., Tanabe S., Ushiba J., Tomita Y. (2007). Influence of mirror therapy on human motor cortex. Int. J. Neurosci. 117, 1039–1048. 10.1080/00207450600936841
    1. Funase K., Tabira T., Higashi T., Liang N., Kasai T. (2007). Increased corticospinal excitability during direct observation of self-movement and indirect observation with a mirror box. Neurosci. Lett. 419, 108–112. 10.1016/j.neulet.2007.04.025
    1. Garry M., Loftus A., Summers J. (2005). Mirror, mirror on the wall: viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability. Exp. Brain Res. 163, 118–122. 10.1007/s00221-005-2226-9
    1. Gegenfurtner K. R., Kiper D. C., Fenstemaker S. B. (1996). Processing of color, form, and motion in macaque area V2. Vis. Neurosci. 13, 161–172. 10.1017/S0952523800007203
    1. Glover S., Baran M. (2017). The motor-cognitive model of motor imagery: evidence from timing errors in simulated reaching and grasping. J. Exp. Psychol. Hum. Percept. Perform. 43, 1359–1375. 10.1037/xhp0000389
    1. Grill S. E., Hallett M., Marcus C., McShane L. (1994). Disturbances of kinaesthesia in patients with cerebellar disorders. Brain 117, 1433–1447. 10.1093/brain/117.6.1433
    1. Guerraz M. (2015). The mirror paradigm and mirror therapy: does the “virtual hand” have a beneficial impact on motor behavior? Ther. Targ. Neurol. Dis. 2, 1–4. 10.14800/ttnd.518
    1. Guillot A., Collet C., Nguyen V. A., Malouin F., Richards C., Doyon J. (2009). Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum. Brain Mapp. 30, 2157–2172. 10.1002/hbm.20658
    1. Hadoush H., Mano H., Sunagawa T., Nakanishi K., Ochi M. (2013). Optimization of mirror therapy to excite ipsilateral primary motor cortex. NeuroRehabilitation 32, 617–624. 10.3233/NRE-130884
    1. Hamzei F., Läppchen C. H., Glauche V., Mader I., Rijntjes M., Weiller C. (2012). Functional plasticity induced by mirror training: the mirror as the element connecting both hands to one hemisphere. Neurorehab. Neural Repair. 26, 484–496. 10.1177/1545968311427917
    1. Hanakawa T., Immisch I., Toma K., Dimyan M. A., Van Gelderen P., Hallett M. (2003). Functional properties of brain areas associated with motor execution and imagery. J. Neurophysiol. 89, 989–1002. 10.1152/jn.00132.2002
    1. Hardwick R. M., Caspers S., Eickhoff S. B., Swinnen S. P. (2018). Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci. Biobehav. Rev. 94, 31–44. 10.1016/j.neubiorev.2018.08.003
    1. Hétu S., Grégoire M., Saimpont A., Coll M.-P., Eugène F., Michon P.-E., et al. . (2013). The neural network of motor imagery: an ALE meta-analysis. Neurosci. Biobehav. Rev. 37, 930–949. 10.1016/j.neubiorev.2013.03.01
    1. Higuchi S., Imamizu H., Kawato M. (2007). Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex 43, 350–358. 10.1016/S0010-9452(08)70460-X
    1. Hoshi E., Tanji J. (2007). Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr. Opin. Neurobiol. 17, 234–242. 10.1016/j.conb.2007.02.003
    1. Jenkinson P. M., Preston C. (2017). The “not-so-strange” body in the mirror: a principal components analysis of direct and mirror self-observation. Conscious. Cognit. 48, 262–272. 10.1016/j.concog.2016.12.007
    1. Kang Y., Park H., Kim H., Lim T., Ku J., Cho S., et al. . (2012). Upper extremity rehabilitation of stroke: facilitation of corticospinal excitability using virtual mirror paradigm. J. NeuroEng. Rehab. 9:71. 10.1186/1743-0003-9-71
    1. Kang Y. J., Ku J., Kim H. J., Park H. K. (2011). Facilitation of corticospinal excitability according to motor imagery and mirror therapy in healthy subjects and stroke patients. Ann. Rehab. Med. 35:747. 10.5535/arm.2011.35.6.747
    1. Kuhtz-Buschbeck J., Mahnkopf C., Holzknecht C., Siebner H., Ulmer S., Jansen O. (2003). Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. Eur. J. Neurosci. 18, 3375–3387. 10.1111/j.1460-9568.2003.03066.x
    1. Lancaster J. L., Tordesillas-Gutiérrez D., Martinez M., Salinas F., Evans A., Zilles K., et al. . (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 28, 1194–1205. 10.1002/hbm.20345
    1. Lee H.-M., Li P.-C., Fan S.-C. (2015). Delayed mirror visual feedback presented using a novel mirror therapy system enhances cortical activation in healthy adults. J. NeuroEng. Rehab. 12, 1–11. 10.1186/s12984-015-0053-1
    1. Li W., Qin W., Liu H., Fan L., Wang J., Jiang T. (2013). Subregions of the human superior frontal gyrus and their connections. Neuroimage 78, 46–58. 10.1016/j.neuroimage.2013.04.011
    1. Manuweera T., Yarossi M., Adamovich S., Tunik E. (2018). Parietal activation associated with target-directed right hand movement is lateralized by mirror feedback to the ipsilateral hemisphere. Front. Hum. Neurosci. 12. 10.3389/fnhum.2018.00531
    1. Matthys K., Smits M., Van der Geest J. N., Van der Lugt A., Seurinck R., Stam H. J., et al. . (2009). Mirror-induced visual illusion of hand movements: a functional magnetic resonance imaging study. Arch. Phys. Med. Rehab. 90, 675–681. 10.1016/j.apmr.2008.09.571
    1. Mehnert J., Brunetti M., Steinbrink J. M., Niedeggen M., Dohle C. (2013). Effect of a mirror-like illusion on activation in the precuneus assessed with functional near-infrared spectroscopy. J. Biomed. Opt. 18:066001. 10.1117/1.JBO.18.6.066001
    1. Merians A., Tunik E., Fluet G., Qiu Q., Adamovich S. (2009). Innovative approaches to the rehabilitation of upper extremity hemiparesis using virtual environments. Eur. J. Phys. Rehab. Med. 45:123.
    1. Michielsen M. E., Selles R. W., van der Geest J. N., Eckhardt M., Yavuzer G., Stam H. J., et al. . (2011a). Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehab. Neural Repair. 25, 223–233. 10.1177/1545968310385127
    1. Michielsen M. E., Smits M., Ribbers G. M., Stam H. J., Van Der Geest J. N., Bussmann J. B., et al. . (2011b). The neuronal correlates of mirror therapy: an fMRI study on mirror induced visual illusions in patients with stroke. J. Neurol. Neurosurg. Psychiatr. 82, 393–398. 10.1136/jnnp.2009.194134
    1. Milde C., Rance M., Kirsch P., Trojan J., Fuchs X., Foell J., et al. . (2015). Do mirror glasses have the same effect on brain activity as a mirror box? Evidence from a functional magnetic resonance imaging study with healthy subjects. PLoS ONE 10:e0127694. 10.1371/journal.pone.0127694
    1. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., et al. . (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4:1. 10.1186/2046-4053-4-1
    1. Molenberghs P., Cunnington R., Mattingley J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci. Biobehav. Rev. 36, 341–349. 10.1016/j.neubiorev.2011.07.004
    1. Müller V. I., Cieslik E. C., Laird A. R., Fox P. T., Radua J., Mataix-Cols D., et al. . (2018). Ten simple rules for neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 84, 151–161. 10.1016/j.neubiorev.2017.11.012
    1. Naito E., Nakashima T., Kito T., Aramaki Y., Okada T., Sadato N. (2007). Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. Eur. J. Neurosci. 25, 3476–3487. 10.1111/j.1460-9568.2007.05587.x
    1. Novaes M. M., Palhano-Fontes F., Peres A., Mazzetto-Betti K., Pelicioni M., Andrade K. C., et al. . (2018). Neurofunctional changes after a single mirror therapy intervention in chronic ischemic stroke. Int. J. Neurosci. 128, 1–9. 10.1080/00207454.2018.1447571
    1. Numata K., Murayama T., Takasugi J., Monma M., Oga M. (2013). Mirror observation of finger action enhances activity in anterior intraparietal sulcus: a functional magnetic resonance imaging study. J. Jpn. Phys. Ther. Assoc. 16, 1–6. 10.1298/jjpta.Vol16_001
    1. Ogiso T., Kobayashi K., Sugishita M. (2000). The precuneus in motor imagery: a magnetoencephalographic study. Neuroreport 11, 1345–1349. 10.1097/00001756-200004270-00039
    1. Pisotta I., Molinari M. (2014). Cerebellar contribution to feedforward control of locomotion. Front. Hum. Neurosci. 8, 1–5. 10.3389/fnhum.2014.00475
    1. Ramachandran V. S., Rogers-Ramachandran D. (1996). Synaesthesia in phantom limbs induced with mirrors. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263, 377–386. 10.1098/rspb.1996.0058
    1. Rizzolatti G., Fadiga L., Matelli M., Bettinardi V., Paulesu E., Perani D., et al. . (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp. Brain Res. 111, 246–252. 10.1007/BF00227301
    1. Rosén B., Lundborg G. (2005). Training with a mirror in rehabilitation of the hand. Scand. J. Plast. Reconstr. Surg. Hand Surg. 39, 104–108. 10.1080/02844310510006187
    1. Rushworth M. F., Nixon P. D., Wade D. T., Renowden S., Passingham R. E. (1998). The left hemisphere and the selection of learned actions. Neuropsychologia 36, 11–24. 10.1016/S0028-3932(97)00101-2
    1. Saleh S., Adamovich S. V., Tunik E. (2014). Mirrored feedback in chronic stroke: recruitment and effective connectivity of ipsilesional sensorimotor networks. Neurorehab. Neural Repair. 28, 344–354. 10.1177/1545968313513074
    1. Saleh S., Yarossi M., Manuweera T., Adamovich S., Tunik E. (2017). Network interactions underlying mirror feedback in stroke: a dynamic causal modeling study. NeuroImage Clin. 13:46. 10.1016/j.nicl.2016.11.012
    1. Schluter N., Krams M., Rushworth M., Passingham R. (2001). Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia 39, 105–113. 10.1016/S0028-3932(00)00105-6
    1. Simmons W. K., Ramjee V., Beauchamp M. S., McRae K., Martin A., Barsalou L. W. (2007). A common neural substrate for perceiving and knowing about color. Neuropsychologia 45, 2802–2810. 10.1016/j.neuropsychologia.2007.05.002
    1. Simos P. G., Kavroulakis E., Maris T., Papadaki E., Boursianis T., Kalaitzakis G., et al. . (2017). Neural foundations of overt and covert actions. Neuroimage 152, 482–496. 10.1016/j.neuroimage.2017.03.036
    1. Stevens J. A., Stoykov M. E. P. (2003). Using motor imagery in the rehabilitation of hemiparesis 1. Arch. Phys. Med. Rehab. 84, 1090–1092. 10.1016/S0003-9993(03)00042-X
    1. Strafella A. P., Paus T. (2000). Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. Neuroreport 11, 2289–2292. 10.1097/00001756-200007140-00044
    1. Tarkka I. M., Hautasaari P. (2019). Motor action execution in reaction-time movements: magnetoencephalographic study. Am. J. Phys. Med. Rehab. 98, 771–776. 10.1097/PHM.0000000000001187
    1. Thieme H., Morkisch N., Mehrholz J., Pohl M., Behrens J., Borgetto B., et al. . (2018). Mirror therapy for improving motor function after stroke. Cochrane Database Syst. Rev. 7, 1–155. 10.1002/14651858.CD008449.pub3
    1. Tinazzi M., Zanette G. (1998). Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities. Neurosci. Lett. 244, 121–124. 10.1016/S0304-3940(98)00150-5
    1. Tominaga W., Matsubayashi J., Deguchi Y., Minami C., Kinai T., Nakamura M., et al. . (2009). A mirror reflection of a hand modulates stimulus-induced 20-Hz activity. Neuroimage 46, 500–504. 10.1016/j.neuroimage.2009.02.021
    1. Turkeltaub P. E., Eickhoff S. B., Laird A. R., Fox M., Wiener M., Fox P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum. Brain Mapp. 33, 1–13. 10.1002/hbm.21186
    1. Uddin L. Q., Molnar-Szakacs I., Zaidel E., Iacoboni M. (2006). rTMS to the right inferior parietal lobule disrupts self-other discrimination. Soc. Cognit. Affect. Neurosci. 1, 65–71. 10.1093/scan/nsl003
    1. Vanni S., Tanskanen T., Seppä M., Uutela K., Hari R. (2001). Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proc. Natl. Acad. Sci. U.S.A. 98, 2776–2780. 10.1073/pnas.041600898
    1. Wang H., Zhao Z., Jiang P., Li X., Lin Q., Wu Q. (2017). Effect and mechanism of mirror therapy on rehabilitation of lower limb motor function in patients with stroke hemiplegia. Biomed. Res. 28, 10165–10170.
    1. Wang J., Fritzsch C., Bernarding J., Holtze S., Mauritz K.-H., Brunetti M., et al. . (2013a). A comparison of neural mechanisms in mirror therapy and movement observation therapy. J. Rehab. Med. 45, 410–413. 10.2340/16501977-1127
    1. Wang J., Fritzsch C., Bernarding J., Krause T., Mauritz K.-H., Brunetti M., et al. . (2013b). Cerebral activation evoked by the mirror illusion of the hand in stroke patients compared to normal subjects. NeuroRehabilitation 33, 593–603. 10.3233/NRE-130999
    1. Wang X., Han Z., He Y., Caramazza A., Song L., Bi Y. (2013). Where color rests: spontaneous brain activity of bilateral fusiform and lingual regions predicts object color knowledge performance. Neuroimage 76, 252–263. 10.1016/j.neuroimage.2013.03.010
    1. Witteman J., Van Heuven V. J., Schiller N. O. (2012). Hearing feelings: a quantitative meta-analysis on the neuroimaging literature of emotional prosody perception. Neuropsychologia 50, 2752–2763. 10.1016/j.neuropsychologia.2012.07.026
    1. Wolbers T., Weiller C., Büchel C. (2003). Contralateral coding of imagined body parts in the superior parietal lobe. Cereb. Cortex 13, 392–399. 10.1093/cercor/13.4.392
    1. Yang Y.-L., Deng H.-X., Xing G.-Y., Xia X.-L., Li H.-F. (2015). Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state. Neural Regen. Res. 10:298. 10.4103/1673-5374.152386
    1. Zeng W., Guo Y., Wu G., Liu X., Fang Q. (2018). Mirror therapy for motor function of the upper extremity in patients with stroke: a meta-analysis. J. Rehab. Med. 50, 8–15. 10.2340/16501977-2287
    1. Zheng G., Ye B., Zheng Y., Xiong Z., Xia R., Qiu P., et al. . (2019). The effects of exercise on the structure of cognitive related brain regions: a meta-analysis of functional neuroimaging data. Int. J. Neurosci. 129, 406–415. 10.1080/00207454.2018.1508135
    1. Zigmond M. J., Coyle J. T., Rowland L. P. (2014). Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders. Amsterdam: Elsevier.

Source: PubMed

Подписаться