Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene

Mir Reza Bekheirnia, Nasim Bekheirnia, Matthew N Bainbridge, Shen Gu, Zeynep Hande Coban Akdemir, Tomek Gambin, Nicolette K Janzen, Shalini N Jhangiani, Donna M Muzny, Mini Michael, Eileen D Brewer, Ewa Elenberg, Arundhati S Kale, Alyssa A Riley, Sarah J Swartz, Daryl A Scott, Yaping Yang, Poyyapakkam R Srivaths, Scott E Wenderfer, Joann Bodurtha, Carolyn D Applegate, Milen Velinov, Angela Myers, Lior Borovik, William J Craigen, Neil A Hanchard, Jill A Rosenfeld, Richard Alan Lewis, Edmond T Gonzales, Richard A Gibbs, John W Belmont, David R Roth, Christine Eng, Michael C Braun, James R Lupski, Dolores J Lamb, Mir Reza Bekheirnia, Nasim Bekheirnia, Matthew N Bainbridge, Shen Gu, Zeynep Hande Coban Akdemir, Tomek Gambin, Nicolette K Janzen, Shalini N Jhangiani, Donna M Muzny, Mini Michael, Eileen D Brewer, Ewa Elenberg, Arundhati S Kale, Alyssa A Riley, Sarah J Swartz, Daryl A Scott, Yaping Yang, Poyyapakkam R Srivaths, Scott E Wenderfer, Joann Bodurtha, Carolyn D Applegate, Milen Velinov, Angela Myers, Lior Borovik, William J Craigen, Neil A Hanchard, Jill A Rosenfeld, Richard Alan Lewis, Edmond T Gonzales, Richard A Gibbs, John W Belmont, David R Roth, Christine Eng, Michael C Braun, James R Lupski, Dolores J Lamb

Abstract

Purpose: To investigate the utility of whole-exome sequencing (WES) to define a molecular diagnosis for patients clinically diagnosed with congenital anomalies of kidney and urinary tract (CAKUT).

Methods: WES was performed in 62 families with CAKUT. WES data were analyzed for single-nucleotide variants (SNVs) in 35 known CAKUT genes, putatively deleterious sequence changes in new candidate genes, and potentially disease-associated copy-number variants (CNVs).

Results: In approximately 5% of families, pathogenic SNVs were identified in PAX2, HNF1B, and EYA1. Observed phenotypes in these families expand the current understanding about the role of these genes in CAKUT. Four pathogenic CNVs were also identified using two CNV detection tools. In addition, we found one deleterious de novo SNV in FOXP1 among the 62 families with CAKUT. The clinical database of the Baylor Miraca Genetics laboratory was queried and seven additional unrelated individuals with novel de novo SNVs in FOXP1 were identified. Six of these eight individuals with FOXP1 SNVs have syndromic urinary tract defects, implicating this gene in urinary tract development.

Conclusion: We conclude that WES can be used to identify molecular etiology (SNVs, CNVs) in a subset of individuals with CAKUT. WES can also help identify novel CAKUT genes.Genet Med 19 4, 412-420.

Figures

Figure 1
Figure 1
Pedigrees and genotypes of the families with pathogenic SNVs in genes known to cause CAKUT and a novel CAKUT gene (Family 38, FOXP1). * denotes individuals for whom WES were performed. NT means not tested. Family 1. Solid black fill shows renal dysplasia and solid grey fill means proteinuria. CG/CG is normal and CG/C- denotes heterozygous deletion of G (c.70delG) in PAX2. Family 2. Proband has cystic renal dysplasia. C/C is normal and C/CC is heterozygous duplication of C (c.1132dupC) in HNF1B. Family 3. Proband has vesicoureteral reflux and multicystic dysplastic kidney (MCDK). G/G is normal and G/A denotes heterozygous splice site variant (c.867+5G>A) in EYA1. Family 38. Proband has unilateral renal agenesis and hydrocephaly. G/G is normal and G/T denotes heterozygous de novo FOXP1 p.P225T SNV.

References

    1. Sanna-Cherchi S, Ravani P, Corbani V, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 2009;76(5):528–533. doi:10.1038/ki.2009.220.
    1. Mansoor O, Chandar J, Rodriguez MM, et al. Long-term risk of chronic kidney disease in unilateral multicystic dysplastic kidney. Pediatr Nephrol. 2011;26:597–603. doi:10.1007/s00467-010-1746-0.
    1. Groothoff JW. Long-term outcomes of children with end-stage renal disease. Pediatr Nephrol. 2005;20(7):849–853. doi:10.1007/s00467-005-1878-9.
    1. Vivante A, Kohl S, Hwang DY, Dworschak GC, Hildebrandt F. Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol. 2014;29(4):695–704. doi:10.1007/s00467-013-2684-4.
    1. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):1502–1511. .
    1. Yang Y, Muzny DM, Xia F, et al. Molecular Findings Among Patients Referred for Clinical Whole-Exome Sequencing. JAMA. 2014;312(18):1870–1879. doi:10.1001/jama.2014.14601.
    1. Karaca E, Harel T, Pehlivan D, et al. Genes that Affect Brain Structure and Function Identified by Rare Variant Analyses of Mendelian Neurologic Disease. Neuron. 2015;88(3):499–513. doi:10.1016/j.neuron.2015.09.048.
    1. Jiang Y, Oldridge DA, Diskin SJ, Zhang NR. CODEX: A normalization and copy number variation detection method for whole exome sequencing. Nucleic Acids Res. 2015;43(6):e39. doi:10.1093/nar/gku1363.
    1. McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. doi:10.1101/gr.107524.110.
    1. Challis D, Yu J, Evani US, et al. An integrative variant analysis suite for whole exome next-generation sequencing data. BMC Bioinformatics. 2012;13(1):8. doi:10.1186/1471-2105-13-8.
    1. Krumm N, Sudmant PH, Ko A, et al. Copy number variation detection and genotyping from exome sequence data. Genome Res. 2012;22(8):1525–1532. doi:10.1101/gr.138115.112.
    1. Vijayarangakannan P, Fitzgerald T. Detection of Copy Number Variation from Exomes in the DDD and UK10K Projects. Uk10KOrg. 2012;10(10):7319. .
    1. Sanna-Cherchi S, Kiryluk K, Burgess KE, et al. Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations. Am J Hum Genet. 2012;91:987–997. doi:10.1016/j.ajhg.2012.10.007.
    1. Verbitsky M, Sanna-Cherchi S, Fasel DA, et al. Genomic imbalances in pediatric patients with chronic kidney disease. J Clin Invest. 2015 doi:10.1172/JCI80877.
    1. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. 2015 doi:10.1038/gim.2015.30.
    1. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. doi:10.1097/GIM.0b013e3182217a3a.
    1. Nicolaou N, Renkema KY, Bongers EMHF, Giles RH, Knoers NV a. M. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol. 2015;(12):1–12. doi:10.1038/nrneph.2015.140.
    1. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603.
    1. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010;26(16):2069–2070. doi:10.1093/bioinformatics/btq330.
    1. Liu X, Jian X, Boerwinkle E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat. 2011;32(8):894–899. doi:10.1002/humu.21517.
    1. Kong A, Frigge ML, Masson G, et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature. 2012;488(7412):471–475. doi:10.1038/nature11396.
    1. Chang S-W, Mislankar M, Misra C, et al. Genetic abnormalities in FOXP1 are associated with congenital heart defects. Hum Mutat. 2013;34:1226–1230. doi:10.1002/humu.22366.
    1. Hamdan FF, Daoud H, Rochefort D, et al. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet. 2010;87:671–678. doi:10.1016/j.ajhg.2010.09.017.
    1. Sollis E, Graham SA, Vino A, et al. Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder HMG Advance Access. Hum Mol Genet. 2015:1–12. doi:10.1093/hmg/ddv495.
    1. McTaggart KE, Budarf ML, Driscoll DA, Emanuel BS, Ferreira P, McDermid HE. Cat eye syndrome chromosome breakpoint clustering: identification of two intervals also associated with 22q11 deletion syndrome breakpoints. Cytogenet Cell Genet. 1998;81(3-4):222–228. doi:10.1159/000015035.
    1. Barua M, Stellacci E, Stella L, et al. Mutations in PAX2 Associate with Adult-Onset FSGS. J Am Soc Nephrol. 2014;25:1942–1953. doi:10.1681/ASN.2013070686.
    1. Stockley TL, Mendoza-Londono R, Propst EJ, Sodhi S, Dupuis L, Papsin BC. A recurrent EYA1 mutation causing alternative RNA splicing in branchio-oto-renal syndrome: implications for molecular diagnostics and disease mechanism. Am J Med Genet A. 2009;149A(3):322–327. doi:10.1002/ajmg.a.32679.
    1. Hwang D-Y, Dworschak GC, Kohl S, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85(6):1–5. doi:10.1038/ki.2013.508.
    1. Sanna-Cherchi S, Sampogna R V, Papeta N, et al. Mutations in DSTYK and dominant urinary tract malformations. N Engl J Med. 2013;369(7):621–629. doi:10.1056/NEJMoa1214479.
    1. Saisawat P, Kohl S, Hilger AC, et al. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int. 2014;85(6):1310–1317. doi:10.1038/ki.2013.417.
    1. Gonzaga-Jauregui C, Lupski JR, Gibbs R a. Human Genome Sequencing in Health and Disease. Annu Rev Med. 2012;63(1):35–61. doi:10.1146/annurev-med-051010-162644.
    1. Vivante A, Kleppa M-J, Schulz J, et al. ARTICLE Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development. Am J Hum Genet. 2015;97(6):291–301. doi:10.1016/j.ajhg.2015.07.001.
    1. Gonzaga-Jauregui C, Harel T, Gambin T, et al. Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy. Cell Rep. 2015;12(7):1169–1183. doi:10.1016/j.celrep.2015.07.023.
    1. Yuan B, Pehlivan D, Karaca E, et al. Global transcriptional disturbances underlie Cornelia de Lange syndrome and related phenotypes. 2015;125(2) doi:10.1172/JCI77435.spectrum.
    1. Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE. Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development. 2007;134:1991–2000. doi:10.1242/dev.02846.
    1. Wangler MF, Gonzaga-Jauregui C, Gambin T, et al. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2) gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome. PLoS Genet. 2014;10(3):e1004258. doi:10.1371/journal.pgen.1004258.
    1. Retterer K, Scuffins J, Schmidt D, et al. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort. 2014 doi:10.1038/gim.2014.160.
    1. Rosias PPR, Sijstermans JMJ, Theunissen PMVM, et al. Phenotypic variability of the cat eye syndrome. Case report and review of the literature. Genet Couns. 2001;12:273–282.
    1. Knijnenburg J, van Bever Y, Hulsman LOM, et al. A 600 kb triplication in the cat eye syndrome critical region causes anorectal, renal and preauricular anomalies in a three-generation family. Eur J Hum Genet. 2012;20(9):986–989. doi:10.1038/ejhg.2012.43.

Source: PubMed

Подписаться