Effects of Mirror Neurons-Based Rehabilitation Techniques in Hand Injuries: A Systematic Review and Meta-Analysis

Marco Tofani, Luigino Santecchia, Antonella Conte, Anna Berardi, Giovanni Galeoto, Carla Sogos, Maurizio Petrarca, Francescaroberta Panuccio, Enrico Castelli, Marco Tofani, Luigino Santecchia, Antonella Conte, Anna Berardi, Giovanni Galeoto, Carla Sogos, Maurizio Petrarca, Francescaroberta Panuccio, Enrico Castelli

Abstract

Background: Hand trauma requires specific rehabilitation protocol depending on the different structures involved. According to type of surgical intervention, and for monitoring pain and edema, post-operative rehabilitation of a hand that has experienced trauma involves different timings for immobilization. Several protocols have been used to reduce immobilization time, and various techniques and methods are adopted, depending on the structures involved. Objective: To measure the effects of mirror neurons-based rehabilitation techniques in hand injuries throughout a systematic review and meta-analysis. Methods: The protocol was accepted in PROSPERO database. A literature search was conducted in Cinahl, Scopus, Medline, PEDro, OTseeker. Two authors independently identified eligible studies, based on predefined inclusion criteria, and extracted the data. RCT quality was assessed using the JADAD scale. Results: Seventy-nine suitable studies were screened, and only eleven were included for qualitative synthesis, while four studies were selected for quantitative analysis. Four studies were case reports/series, and seven were RCTs. Nine investigate the effect of Mirror Therapy and two the effect of Motor Imagery. Quantitative analyses revealed Mirror Therapy as effective for hand function recovery (mean difference = −14.80 95% Confidence Interval (CI) = −17.22, −12.38) (p < 0.00001) in the short term, as well as in long follow-up groups (mean difference = −13.11 95% Confidence Interval (CI) = −17.53, −8.69) (p < 0.00001). Clinical, but not statistical, efficacy was found for manual dexterity (p = 0.15), while no benefit was reported for range of motion. Conclusions: Mirror neurons-based rehabilitation techniques, combined with conventional occupational and physical therapy, can be a useful approach in hand trauma. Mirror therapy seems to be effective for hand function recovery, but, for motor imagery and action observation, there is not sufficient evidence to recommend its use. Further research on the efficacy of the mirror neurons-based technique in hand injury is recommended.

Keywords: hand injuries; mirror neurons; mirror therapy; motor imagery; rehabilitation; systematic review.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow-chart of search and screening process.
Figure 2
Figure 2
Effect of Mirror Therapy as Measured with DASH: 6–9 weeks post-intervention [38,39].
Figure 3
Figure 3
Effect of Mirror Therapy as Measured with DASH: 10–12 weeks post-intervention [35,39].
Figure 4
Figure 4
Effect of Mirror Therapy as Measured with MMDT [37,39].
Figure 5
Figure 5
Effect of Mirror Therapy on Range of Motion after 6 weeks post-intervention [38,39].

References

    1. Crowe C.S., Massenburg B.B., Morrison S.D., Chang J., Friedrich J.B., Abady G.G., Alahdab F., Alipour V., Arabloo J., Asaad M., et al. Global Trends of Hand and Wrist Trauma: A Systematic Analysis of Fracture and Digit Amputation Using the Global Burden of Disease 2017 Study. Inj. Prev. 2020;26:i115. doi: 10.1136/injuryprev-2019-043495.
    1. Dębski T., Noszczyk B.H. Epidemiology of Complex Hand Injuries Treated in the Plastic Surgery Department of a Tertiary Referral Hospital in Warsaw. Eur. J. Trauma Emerg. Surg. 2021;47:1607–1612. doi: 10.1007/s00068-020-01312-5.
    1. Guzelkucuk U., Duman I., Taskaynatan M.A., Dincer K. Comparison of Therapeutic Activities with Therapeutic Exercises in the Rehabilitation of Young Adult Patients with Hand Injuries. J. Hand Surg. 2007;32:1429–1435. doi: 10.1016/j.jhsa.2007.08.008.
    1. Thien T.B., Becker J.H., Theis J.-C. Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2004. Rehabilitation after Surgery for Flexor Tendon Injuries in the Hand.
    1. Marotta N., Demeco A., Marinaro C., Moggio L., Pino I., Barletta M., Petraroli A., Ammendolia A. Comparative Effectiveness of Orthoses for Thumb Osteoarthritis: A Systematic Review and Network Meta-Analysis. Arch. Phys. Med. Rehabil. 2021;102:502–509. doi: 10.1016/j.apmr.2020.06.012.
    1. Çetin A., Dinçer F., Keçik A., Çetin M. Rehabiliation of Flexor Tendon Injuries by Use of a Combined Regimen of Modified Kleinert and Modified Duran Techniques. Am. J. Phys. Med. Rehabil. 2001;80:721–728. doi: 10.1097/00002060-200110000-00003.
    1. Sarasini F., Tirillò J., Puglia D., Kenny J.M., Dominici F., Santulli C., Tofani M., de Santis R. Effect of Different Lignocellulosic Fibres on Poly(ε-Caprolactone)-Based Composites for Potential Applications in Orthotics. RSC Adv. 2015;5:23798–23809. doi: 10.1039/C5RA00832H.
    1. Waldburger L., Schaller R., Furthmüller C., Schrepfer L., Schaefer D.J., Kaempfen A. 3D-Printed Hand Splints versus Thermoplastic Splints: A Randomized Controlled Pilot Feasibility Trial. Int. J. Bioprint. 2022;8:128–138. doi: 10.18063/ijb.v8i1.474.
    1. Benzy V.K., Vinod A.P., Member S., Subasree R., Alladi S., Raghavendra K. Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation; Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2020;28:3051–3062. doi: 10.1109/TNSRE.2020.3039331.
    1. Malouin F., Jackson P.L., Richards C.L. Towards the Integration of Mental Practice in Rehabilitation Programs. A Critical Review. Front. Hum. Neurosci. 2013;7:576. doi: 10.3389/fnhum.2013.00576.
    1. Mayer J., Bohn J., Görlich P., Eberspächer H. Mentales Gehtraining—Wirksamkeit Eines Therapieverfahrens in Der Rehabilitation Nach Hüftendoprothetik. Z. Orthop. Ihre Grenzgeb. 2005;143:419–423. doi: 10.1055/s-2005-836829.
    1. Jeannerod M. Mental Imagery in the Motor Context. Neuropsychologia. 1995;33:1419–1432. doi: 10.1016/0028-3932(95)00073-C.
    1. Vogt S., Di Rienzo F., Collet C., Collins A., Guillot A. Multiple Roles of Motor Imagery during Action Observation. Front. Hum. Neurosci. 2013;7:807. doi: 10.3389/fnhum.2013.00807.
    1. Keysers C., Wicker B., Gazzola V., Anton J.L., Fogassi L., Gallese V. A Touching Sight: SII/PV Activation during the Observation and Experience of Touch. Neuron. 2004;42:335–346. doi: 10.1016/S0896-6273(04)00156-4.
    1. Zhang Y., Xing Y., Li C., Hua Y., Hu J., Wang Y., Ya R., Meng Q., Bai Y. Mirror Therapy for Unilateral Neglect after Stroke: A Systematic Review. Eur. J. Neurol. 2021;29:358–371. doi: 10.1111/ene.15122.
    1. Moseley G.L. Graded Motor Imagery for Pathologic Pain: A Randomized Controlled Trial. Neurology. 2006;67:2129–2134. doi: 10.1212/01.wnl.0000249112.56935.32.
    1. Dohle C., Püllen J., Nakaten A., Küst J., Rietz C., Karbe H. Mirror Therapy Promotes Recovery from Severe Hemiparesis: A Randomized Controlled Trial. Neurorehabilit. Neural Repair. 2009;23:209–217. doi: 10.1177/1545968308324786.
    1. Garry M.I., Loftus A., Summers J.J. Mirror, Mirror on the Wall: Viewing a Mirror Reflection of Unilateral Hand Movements Facilitates Ipsilateral M1 Excitability. Exp. Brain Res. 2005;163:118–122. doi: 10.1007/s00221-005-2226-9.
    1. Buccino G. Action Observation Treatment: A Novel Tool in Neurorehabilitation. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20130185. doi: 10.1098/rstb.2013.0185.
    1. Buchignani B., Beani E., Pomeroy V., Iacono O., Sicola E., Perazza S., Bieber E., Feys H., Klingels K., Cioni G., et al. Action Observation Training for Rehabilitation in Brain Injuries: A Systematic Review and Meta-Analysis. BMC Neurol. 2019;19:344. doi: 10.1186/s12883-019-1533-x.
    1. Rothgangel A.S., Braun S.M., Beurskens A.J., Seitz R.J., Wade D.T. The Clinical Aspects of Mirror Therapy in Rehabilitation: A Systematic Review of the Literature. Int. J. Rehabil. Res. 2011;34:1–13. doi: 10.1097/MRR.0b013e3283441e98.
    1. Fabbri B., Berardi A., Tofani M., Panuccio F., Ruotolo I., Sellitto G., Galeoto G. A Systematic Review of the Psychometric Properties of the Jebsen–Taylor Hand Function Test (JTHFT) Hand Surg. Rehabil. 2021;40:560–567. doi: 10.1016/j.hansur.2021.05.004.
    1. Tofani M., Castelli E., Sabbadini M., Berardi A., Murgia M., Servadio A., Galeoto G. Examining Reliability and Validity of the Jebsen-Taylor Hand Function Test Among Children With Cerebral Palsy. Percept. Mot. Ski. 2020;127:684–697. doi: 10.1177/0031512520920087.
    1. Berardi A., Saffioti M., Tofani M., Nobilia M., Culicchia G., Valente D., Servadio A., Galeoto G. Internal Consistency and Validity of the Jebsen-Taylor Hand Function Test in an Italian Population with Hemiparesis. NeuroRehabilitation. 2019;45:331–339. doi: 10.3233/NRE-192867.
    1. Savona A., Ferralis L., Saffioti M., Tofani M., Nobilia M., Culicchia G., Berardi A., Servadio A., Galeoto G. Evaluation of Intra- and Inter-Rater Reliability and Concurrent Validity of the Italian Version of the Jebsen–Taylor Hand Function Test in Adults with Rheumatoid Arthritis. Hand Ther. 2019;24:48–54. doi: 10.1177/1758998319843554.
    1. Panuccio F., Galeoto G., Marquez M.A., Tofani M., Nobilia M., Culicchia G., Berardi A. Internal Consistency and Validity of the Italian Version of the Jebsen–Taylor Hand Function Test (JTHFT-IT) in People with Tetraplegia. Spinal Cord. 2021;59:266–273. doi: 10.1038/s41393-020-00602-4.
    1. Tofani M., Nobilia M., Culicchia G., Esposito G., Savona A., Tashi I., Ventura A., Galeoto G. The Italian Version of Rheumatoid Arthritis Pain Scale (IT-RAPS): Psychometric Properties on Community and Clinical Samples. Reumatismo. 2019;71:13–18. doi: 10.4081/reumatismo.2019.1043.
    1. Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gøtzsche P.C., Ioannidis J.P.A., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009;339:b2700
    1. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A., Estarli M., Barrera E.S.A., et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Rev. Esp. De Nutr. Hum. Y Diet. 2016;4:1–9. doi: 10.1186/2046-4053-4-1.
    1. Tsao J.W., Finn S.B., Miller M.E. Reversal of Phantom Pain and Hand-to-Face Remapping after Brachial Plexus Avulsion. Ann. Clin. Transl. Neurol. 2016;3:463–464. doi: 10.1002/acn3.316.
    1. Rosén B., Lundborg G. Training with a Mirror in Rehabilitation of the Hand. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2005;39:104–108. doi: 10.1080/02844310510006187.
    1. Selles R.W., Schreuders T.A.R., Stam H.J. Mirror Therapy in Patients with Causalgia (Complex Regional Pain Syndrome Type II) Following Peripheral Nerve Injury: Two Cases. J. Rehabil. Med. 2008;40:312–314. doi: 10.2340/16501977-0158.
    1. Altschuler E.L., Hu J. Mirror Therapy in a Patient with a Fractured Wrist and No Active Wrist Extension. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2008;42:110–111. doi: 10.1080/02844310701510355.
    1. Guillot A., Lebon F., Vernay M., Girbon J.P., Doyon J., Collet C. Effect of Motor Imagery in the Rehabilitation of Burn Patients. J. Burn Care Res. 2009;30:686–693. doi: 10.1097/BCR.0b013e3181ac0003.
    1. Paula M.H., Barbosa R.I., Marcolino A.M., Elui V.M.C., Rosén B., de Fonseca M.C.R. Early Sensory Re-Education of the Hand after Peripheral Nerve Repair Based on Mirror Therapy: A Randomized Controlled Trial. Braz. J. Phys. Ther. 2016;20:58–65. doi: 10.1590/bjpt-rbf.2014.0130.
    1. Yun D.E., Kim M.K. Effects of Mirror Therapy on Muscle Activity, Muscle Tone, Pain, and Function in Patients with Mutilating Injuries: A Randomized Controlled Trial. Medicine. 2019;98:e15157. doi: 10.1097/MD.0000000000015157.
    1. Hsu H.Y., Chen P.T., Kuan T.S., Yang H.C., Shieh S.J., Kuo L.C. A Touch-Observation and Task-Based Mirror Therapy Protocol to Improve Sensorimotor Control and Functional Capability of Hands for Patients with Peripheral Nerve Injury. Am. J. Occup. Ther. 2019;73 doi: 10.5014/ajot.2018.027763.
    1. Rostami H.R., Arefi A., Tabatabaei S. Effect of Mirror Therapy on Hand Function in Patients with Hand Orthopaedic Injuries: A Randomized Controlled Trial. Disabil. Rehabil. 2013;35:1647–1651. doi: 10.3109/09638288.2012.751132.
    1. Abolfazli M., Lajevardi L., Mirzaei L., Abdorazaghi H.A., Azad A., Taghizadeh G. The Effect of Early Intervention of Mirror Visual Feedback on Pain, Disability and Motor Function Following Hand Reconstructive Surgery: A Randomized Clinical Trial. Clin. Rehabil. 2019;33:494–503. doi: 10.1177/0269215518811907.
    1. Stenekes M.W., Geertzen J.H., Nicolai J.P.A., de Jong B.M., Mulder T. Effects of Motor Imagery on Hand Function During Immobilization After Flexor Tendon Repair. Arch. Phys. Med. Rehabil. 2009;90:553–559. doi: 10.1016/j.apmr.2008.10.029.
    1. Avanzino L., Bassolino M., Pozzo T., Bove M. Use-Dependent Hemispheric Balance. J. Neurosci. 2011;31:3423–3428. doi: 10.1523/JNEUROSCI.4893-10.2011.
    1. Avanzino L., Pelosin E., Abbruzzese G., Bassolino M., Pozzo T., Bove M. Shaping Motor Cortex Plasticity through Proprioception. Cereb. Cortex. 2014;24:2807–2814. doi: 10.1093/cercor/bht139.
    1. Huber R., Ghilardi M.F., Massimini M., Ferrarelli F., Riedner B.A., Peterson M.J., Tononi G. Arm Immobilization Causes Cortical Plastic Changes and Locally Decreases Sleep Slow Wave Activity. Nat. Neurosci. 2006;9:1169–1176. doi: 10.1038/nn1758.
    1. Bassolino M., Bove M., Jacono M., Fadiga L., Pozzo T. Functional Effect of Short-Term Immobilization: Kinematic Changes and Recovery on Reaching-to-Grasp. Neuroscience. 2012;215:127–134. doi: 10.1016/j.neuroscience.2012.04.019.
    1. Moisello C., Bove M., Huber R., Abbruzzese G., Battaglia F., Tononi G., Ghilardi M.F. Short-Term Limb Immobilization Affects Motor Performance. J. Mot. Behav. 2008;40:165–176. doi: 10.3200/JMBR.40.2.165-176.
    1. Toussaint L., Meugnot A. Short-Term Limb Immobilization Affects Cognitive Motor Processes. J. Exp. Psychol. Learn. Mem. Cogn. 2013;39:623–632. doi: 10.1037/a0028942.
    1. Meugnot A., Agbangla N.F., Almecija Y., Toussaint L. Motor Imagery Practice May Compensate for the Slowdown of Sensorimotor Processes Induced by Short-Term Upper-Limb Immobilization. Psychol. Res. 2015;79:489–499. doi: 10.1007/s00426-014-0577-1.
    1. Silva S., Loubinoux I., Olivier M., Bataille B., Fourcade O., Samii K., Jeannerod M., Démonet J.F. Impaired Visual Hand Recognition in Preoperative Patients during Brachial Plexus Anesthesia: Importance of Peripheral Neural Input for Mental Representation of the Hand. Anesthesiology. 2011;114:126–134. doi: 10.1097/ALN.0b013e31820164f1.
    1. Toussaint L., Blandin Y. On the Role of Imagery Modalities on Motor Learning. J. Sports Sci. 2010;28:497–504. doi: 10.1080/02640410903555855.
    1. Holmes P., Calmels C. A Neuroscientific Review of Imagery and Observation Use in Sport. J. Mot. Behav. 2008;40:433–445. doi: 10.3200/JMBR.40.5.433-445.
    1. Gentili R., Han C.E., Schweighofer N., Papaxanthis C. Motor Learning without Doing: Trial-by-Trial Improvement in Motor Performance during Mental Training. J. Neurophysiol. 2010;104:774–783. doi: 10.1152/jn.00257.2010.
    1. Jackson P.L., Lafleur M.F., Malouin F., Richards C.L., Doyon J. Functional Cerebral Reorganization Following Motor Sequence Learning through Mental Practice with Motor Imagery. Neuroimage. 2003;20:1171–1180. doi: 10.1016/S1053-8119(03)00369-0.
    1. Jeannerod M. Neural Simulation of Action: A Unifying Mechanism for Motor Cognition. NeuroImage. 2001;14:S103–S109. doi: 10.1006/nimg.2001.0832.
    1. Ruby P., Decety J. What You Believe versus What You Think They Believe: A Neuroimaging Study of Conceptual Perspective-Taking. Eur. J. Neurosci. 2003;17:2475–2480. doi: 10.1046/j.1460-9568.2003.02673.x.
    1. Solodkin A., Hlustik P., Chen E.E., Small S.L. Fine Modulation in Network Activation during Motor Execution and Motor Imagery. Cereb. Cortex. 2004;14:1246–1255. doi: 10.1093/cercor/bhh086.
    1. Stinear C.M., Byblow W.D., Steyvers M., Levin O., Swinnen S.P. Kinesthetic, but Not Visual, Motor Imagery Modulates Corticomotor Excitability. Exp. Brain Res. 2006;168:157–164. doi: 10.1007/s00221-005-0078-y.
    1. Yang Y.J., Jeon E.J., Kim J.S., Chung C.K. Characterization of Kinesthetic Motor Imagery Compared with Visual Motor Imageries. Sci. Rep. 2021;11:3751. doi: 10.1038/s41598-021-82241-0.
    1. Jackson P.L., Lafleur M.F., Malouin F., Richards C., Doyon J. Potential Role of Mental Practice Using Motor Imagery in Neurologic Rehabilitation. Arch. Phys. Med. Rehabil. 2001;82:1133–1141. doi: 10.1053/apmr.2001.24286.
    1. Mulder T. Motor Imagery and Action Observation: Cognitive Tools for Rehabilitation. J. Neural. Transm. 2007;114:1265–1278. doi: 10.1007/s00702-007-0763-z.
    1. Touzalin-Chretien P., Ehrler S., Dufour A. Dominance of Vision over Proprioception on Motor Programming: Evidence from ERP. Cereb. Cortex. 2010;20:2007–2016. doi: 10.1093/cercor/bhp271.
    1. Nojima I., Mima T., Koganemaru S., Thabit M.N., Fukuyama H., Kawamata T. Human Motor Plasticity Induced by Mirror Visual Feedback. J. Neurosci. 2012;32:1293–1300. doi: 10.1523/JNEUROSCI.5364-11.2012.
    1. Ramachandran V.S., Hirstein W. The Perception of Phantom Limbs. The D. O. Hebb Lecture. Brain. 1998;121:1603–1630. doi: 10.1093/brain/121.9.1603.
    1. Brodie E.E., Whyte A., Waller B. Increased Motor Control of a Phantom Leg in Humans Results from the Visual Feedback of a Virtual Leg. Neurosci. Lett. 2003;341:167–169. doi: 10.1016/S0304-3940(03)00160-5.
    1. Giraux P., Sirigu A. Illusory Movements of the Paralyzed Limb Restore Motor Cortex Activity. NeuroImage. 2003;20:S107–S111. doi: 10.1016/j.neuroimage.2003.09.024.
    1. McCabe C.S., Haigh R.C., Ring E.F.J., Halligan P.W., Wall P.D., Blake D.R. A Controlled Pilot Study of the Utility of Mirror Visual Feedback in the Treatment of Complex Regional Pain Syndrome (Type 1) Rheumatology. 2003;42:97–101. doi: 10.1093/rheumatology/keg041.
    1. Maihöfner C., Handwerker H.O., Neundörfer B., Birklein F. Cortical Reorganization during Recovery from Complex Regional Pain Syndrome. Neurology. 2004;63:693–701. doi: 10.1212/01.WNL.0000134661.46658.B0.
    1. Grèzes J., Armony J.L., Rowe J., Passingham R.E. Activations Related to “Mirror” and “Canonical” Neurones in the Human Brain: An FMRI Study. Neuroimage. 2003;18:928–937. doi: 10.1016/S1053-8119(03)00042-9.
    1. von Hippel P.T. The Heterogeneity Statistic I2 Can Be Biased in Small Meta-Analyses. BMC Med. Res. Methodol. 2015;15:35. doi: 10.1186/s12874-015-0024-z.

Source: PubMed

Подписаться