Lutein across the Lifespan: From Childhood Cognitive Performance to the Aging Eye and Brain

James M Stringham, Elizabeth J Johnson, B Randy Hammond, James M Stringham, Elizabeth J Johnson, B Randy Hammond

Abstract

Lutein is a non-provitamin A dietary carotenoid found in dark green leafy vegetables, corn, eggs, and avocados. Among the carotenoids, lutein and its isomer, zeaxanthin, are the only 2 that cross the blood-retina barrier to form macular pigment in the retina. Lutein also preferentially accumulates in the human brain across multiple life stages. A variety of scientific evidence supports a role for lutein in visual as well as cognitive function across the lifespan. The purpose of this review is to summarize the latest science on lutein's role in the eye and the brain across different ages.

Keywords: brain; carotenoids; cognition; eye; lifespan; lutein; nutrition; vision; zeaxanthin.

References

    1. Perry A, Rasmussen H, Johnson EJ. Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J Food Compos Anal 2009;22(1):9–15.
    1. Mares J. Lutein and zeaxanthin isomers in eye health and disease. Annu Rev Nutr 2016;36:571–602.
    1. Renzi LM, Johnson EJ. Lutein and age-related ocular disorders in the older adult: a review. J Nutr Elder 2007;26(3–4):139–57.
    1. Li W, Hu Z-F, Chen B, Ni G-X. Response of C2C12 myoblasts to hypoxia: the relative roles of glucose and oxygen in adaptive cellular metabolism. BioMed Res Int 2013:326346.
    1. Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000;45(2):115–34.
    1. Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 2002;23(5):795–807.
    1. Nakanishi H, Wu Z. Microglia-aging: roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav Brain Res 2009;201(1):1–7.
    1. Afonso V, Santos G, Collin P, Khatib A-M, Mitrovic DR, Lomri N, Leitman DC, Lomri A. Tumor necrosis factor-α down-regulates human Cu/Zn superoxide dismutase 1 promoter via JNK/AP-1 signaling pathway. Free Radic Biol Med 2006;41(5):709–21.
    1. Liang F-Q, Godley BF. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 2003;76(4):397–403.
    1. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet 2012;379(9827):1728–38.
    1. Bonomini F, Tengattini S, Fabiano A, Bianchi R, Rezzani R. Atherosclerosis and oxidative stress. Histol Histopathol 2008;23(3):381–90.
    1. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160(1):1–40.
    1. Snodderly DM, Auran JD, Delori FC. The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci 1984;25(6):674–85.
    1. Schwiegerling J. Theoretical limits to visual performance. Surv Ophthalmol 2000;45(2):139–46.
    1. Ham WT, Mueller HA, Sliney DH. Retinal sensitivity to damage from short wavelength light. Nature 1976;260(5547):153–5.
    1. Snodderly DM, Brown PK, Delori FC, Auran JD. The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest Ophthalmol Vis Sci 1984;25(6):660–73.
    1. Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Miller DT et al. .. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. JAMA 1994;272(18):1413–20.
    1. Mares JA, Voland RP, Sondel SA, Millen AE, Larowe T, Moeller SM, Klein ML, Blodi BA, Chappell RJ, Tinker L et al. .. Healthy lifestyles related to subsequent prevalence of age-related macular degeneration. Arch Ophthalmol 2011;129(4):470–80.
    1. Panova IG, Tatikolov AS, Sukhikh GT. Correlation between the content of albumin and carotenoids in human vitreous body during prenatal development. Bull Exp Biol Med 2007;144(5):681–3.
    1. Hendrickson A. Development of retinal layers in prenatal human retina. Am J Ophthalmol 2016;161:29–35.e1.
    1. Rubin LP, Chan GM, Barrett-Reis BM, Fulton AB, Hansen RM, Ashmeade TL, Oliver JS, Mackey AD, Dimmit RA, Hartmann EE et al. .. Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants. J Perinatol 2012;32(6):418–24.
    1. Sharifzadeh M, Bernstein PS, Gellermann W. Reflection-based imaging of macular pigment distributions in infants and children. J Biomed Opt 2013;18(11):116001.
    1. Hammond BR Jr, Wooten BR, Snodderly DM. Individual variations in the spatial profile of human macular pigment. J Opt Soc Am A Opt Image Sci Vis 1997;14(6):1187–96.
    1. Hammond BR, Wooten BR. CFF thresholds: relation to macular pigment optical density. Ophthalmic Physiol Opt 2005;25(4):315–19.
    1. Stringham JM, Stringham NT, O'Brien KJ. Macular carotenoid supplementation improves visual performance, sleep quality, and adverse physical symptoms in those with high screen time exposure. Foods 2017;6(7):47.
    1. Bovier ER, Renzi LM, Hammond BR. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on neural processing speed and efficiency. PloS One 2014;9(9):e108178.
    1. Stringham JM, Fuld K, Wenzel AJ. Spatial properties of photophobia. Invest Ophthalmol Vis Sci 2004;45(10):3838–48.
    1. Stringham JM, Garcia PV, Smith PA, McLin LN, Foutch BK. Macular pigment and visual performance in glare: benefits for photostress recovery, disability glare, and visual discomfort. Invest Ophthalmol Vis Sci 2011;52(10):7406–15.
    1. Stringham JM, Snodderly DM. Enhancing performance while avoiding damage: a contribution of macular pigment. Invest Ophthalmol Vis Sci 2013;54(9):6298–306.
    1. Stringham JM, Hammond BR Jr. The glare hypothesis of macular pigment function. Optom Vis Sci 2007;84(9):859–64.
    1. Stringham JM, Hammond BR. Macular pigment and visual performance under glare conditions. Optom Vis Sci 2008;85(2):82–8.
    1. Hammond BR, Fletcher LM, Roos F, Wittwer J, Schalch W. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast. Invest Ophthalmol Vis Sci 2014;55(12):8583–9.
    1. Stringham JM, O'Brien KJ, Stringham NT. Macular carotenoid supplementation improves disability glare performance and dynamics of photostress recovery. Eye Vis 2016;3:30.
    1. Owsley C, Sloane ME. Contrast sensitivity, acuity, and the perception of “real-world” targets. Br J Ophthalmol 1987;71(10):791–6.
    1. Stringham JM, O'Brien KJ, Stringham NT. Contrast sensitivity and lateral inhibition are enhanced with macular carotenoid supplementation. Invest Ophthalmol Vis Sci 2017;58(4):2291–5.
    1. Nolan JM, Power R, Stringham J, Dennison J, Stack J, Kelly D, Moran R, Akuffo KO, Corcoran L, Beatty S. Enrichment of macular pigment enhances contrast sensitivity in subjects free of retinal disease: Central Retinal Enrichment Supplementation Trials – report 1. Invest Ophthalmol Vis Sci 2016;57(7):3429–39.
    1. Akuffo KO, Beatty S, Peto T, Stack J, Stringham J, Kelly D, Leung I, Corcoran L, Nolan JM. The impact of supplemental antioxidants on visual function in nonadvanced age-related macular degeneration: a head-to-head randomized clinical trial. Invest Ophthalmol Vis Sci 2017;58(12):5347–60.
    1. Hammond BR Jr, Wooten BR, Snodderly DM. Preservation of visual sensitivity of older subjects: association with macular pigment density. Invest Ophthalmol Vis Sci 1998;39(2):397–406.
    1. Stringham JM, Garcia PV, Smith PA, Hiers PL, McLin LN, Kuyk TK, Foutch BK. Macular pigment and visual performance in low-light conditions. Invest Ophthalmol Vis Sci 2015;56(4):2459–68.
    1. Zarubina AV, Huisingh CE, Clark ME, Sloan KR, McGwin G, Crosson JN, Curcio CA, Owsley C. Rod-mediated dark adaptation and macular pigment optical density in older adults with normal maculas. Curr Eye Res 2018;43(7):913–20.
    1. Renzi LM, Hammond BR Jr. The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthalmic Physiol Opt 2010;30(4):351–7.
    1. Johnson EJ, Maras JE, Rasmussen HM, Tucker KL. Intake of lutein and zeaxanthin differ with age, sex, and ethnicity. J Am Diet Assoc 2010;110(9):1357–62.
    1. Stringham NT, Stringham JM. Temporal visual mechanisms may mediate compensation for macular pigment. Perception 2015;44(12):1400–15.
    1. Chung H-Y, Ferreira ALA, Epstein S, Paiva SAR, Castaneda-Sceppa C, Johnson EJ. Site-specific concentrations of carotenoids in adipose tissue: relations with dietary and serum carotenoid concentrations in healthy adults. Am J Clin Nutr 2009;90(3):533–9.
    1. Hammond BR Jr, Johnson EJ, Russell RM, Krinsky NI, Yeum KJ, Edwards RB, Snodderly DM. Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci 1997;38(9):1795–801.
    1. Mares JA, LaRowe TL, Snodderly DM, Moeller SM, Gruber MJ, Klein ML, Wooten BR, Johnson EJ, Chappell RJ; CAREDS Macular Pigment Study Group and Investigators Predictors of optical density of lutein and zeaxanthin in retinas of older women in the Carotenoids in Age-Related Eye Disease Study, an ancillary study of the Women's Health Initiative. Am J Clin Nutr 2006;84(5):1107–22.
    1. Johnson EJ, Vishwanathan R, Johnson MA, Hausman DB, Davey A, Scott TM, Green RC, Miller LS, Gearing M, Woodard J et al. .. Relationship between serum and brain carotenoids, α-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia Centenarian Study. J Aging Res 2013:951786.
    1. Mulder KA, Innis SM, Rasmussen BF, Wu BT, Richardson KJ, Hasman D. Plasma lutein concentrations are related to dietary intake, but unrelated to dietary saturated fat or cognition in young children. J Nutr Sci 2014;3:e11.
    1. Food and Nutrition Board, Institute of Medicine Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington (DC): National Academies Press; 2014.
    1. Vishwanathan R, Kuchan MJ, Sen S, Johnson EJ. Lutein and preterm infants with decreased concentrations of brain carotenoids. J Pediatr Gastroenterol Nutr 2014;59(5):659–65.
    1. Tanprasertsuk J, Li B, Bernstein PS, Vishwanathan R, Johnson MA, Poon L, Johnson EJ. Relationship between concentrations of lutein and StARD3 among pediatric and geriatric human brain tissue. PloS One 2016;11(5):e0155488.
    1. Bernstein PS, Sharifzadeh M, Liu A, Ermakov I, Nelson K, Sheng X, Panish C, Carlstrom B, Hoffman RO, Gellermann W. Blue-light reflectance imaging of macular pigment in infants and children. Invest Ophthalmol Vis Sci 2013;54(6):4034–40.
    1. Vishwanathan R, Neuringer M, Snodderly DM, Schalch W, Johnson EJ. Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates. Nutr Neurosci 2013;16(1):21–9.
    1. Vishwanathan R, Schalch W, Johnson EJ. Macular pigment carotenoids in the retina and occipital cortex are related in humans. Nutr Neurosci 2016;19(3):95–101.
    1. Feeney J, Finucane C, Savva GM, Cronin H, Beatty S, Nolan JM, Kenny RA. Low macular pigment optical density is associated with lower cognitive performance in a large, population-based sample of older adults. Neurobiol Aging 2013;34(11):2449–56.
    1. Renzi LM, Dengler MJ, Puente A, Miller LS, Hammond BR. Relationships between macular pigment optical density and cognitive function in unimpaired and mildly cognitively impaired older adults. Neurobiol Aging 2014;35(7):1695–9.
    1. Kelly D, Coen RF, Akuffo KO, Beatty S, Dennison J, Moran R, Stack J, Howard AN, Mulcahy R, Nolan JM. Cognitive function and its relationship with macular pigment optical density and serum concentrations of its constituent carotenoids. J Alzheimers Dis 2015;48(1):261–77.
    1. Nolan JM, Mulcahy R, Power R, Moran R, Howard AN. Nutritional intervention to prevent Alzheimer's disease: potential benefits of xanthophyll carotenoids and omega-3 fatty acids combined. J Alzheimers Dis 2018;64(2):367–78.
    1. Feeney J, O'Sullivan M, Kenny RA, Robertson IH. Change in perceived stress and 2-year change in cognitive function among older adults: the Irish Longitudinal Study on Ageing. Stress Health 2018;34(3):403–10.
    1. Johnson EJ, McDonald K, Caldarella SM, Chung H-Y, Troen AM, Snodderly DM. Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr Neurosci 2008;11(2):75–83.
    1. Mohn E, Vishwanathan R, Schalch W, Lichtenstein AH, Matthan NR, Poon LW, Green RC, Gearing M, Johnson EJ. The relationship of lutein and DHA in age-related cognitive function. Poster Presentation at Experimental Biology Conference; 20–24 April,2013; Boston, MA.
    1. Scott TM, Rasmussen HM, Chen O, Johnson EJ. Avocado consumption increases macular pigment density in older adults: a randomized, controlled trial. Nutrients 2017;9(9):E919.
    1. Hammond BR, Miller LS, Bello MO, Lindbergh CA, Mewborn C, Renzi-Hammond LM. Effects of lutein/zeaxanthin supplementation on the cognitive function of community dwelling older adults: a randomized, double-masked, placebo-controlled trial. Front Aging Neurosci 2017;9:254.
    1. Renzi-Hammond LM, Bovier ER, Fletcher LM, Miller LS, Mewborn CM, Lindbergh CA, Baxter JH, Hammond BR. Effects of a lutein and zeaxanthin intervention on cognitive function: a randomized, double-masked, placebo-controlled trial of younger healthy adults. Nutrients 2017;9(11):E1246.
    1. Giedd JN, Raznahan A, Alexander-Bloch A, Schmitt E, Gogtay N, Rapoport JL. Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology 2015;40(1):43–9.
    1. Romeo RD. The metamorphosis of adolescent hormonal stress reactivity: a focus on animal models. Front Neuroendocrinol 2018;49:43–51.
    1. Deoni SCL. Neuroimaging of the developing brain and impact of nutrition. Nestle Nutr Inst Workshop Ser 2018;89:155–74.
    1. Ciulla TA, Curran-Celantano J, Cooper DA, Hammond BR Jr, Danis RP, Pratt LM, Riccardi KA, Filloon TG. Macular pigment optical density in a midwestern sample. Ophthalmology 2001;108(4):730–7.
    1. McCorkle SM, Raine LB, Hammond BR Jr, Renzi-Hammond L, Hillman CH, Khan NA. Reliability of heterochromatic flicker photometry in measuring macular pigment optical density among preadolescent children. Foods 2015;4(4):594–604.
    1. Hassevoort KM, Khazoum SE, Walker JA, Barnett SM, Raine LB, Hammond BR, Renzi-Hammond LM, Kramer AF, Khan NA, Hillman CH et al. .. Macular carotenoids, aerobic fitness, and central adiposity are associated differentially with hippocampal-dependent relational memory in preadolescent children. J Pediatr 2017;183:108–14.e1.
    1. Lieblein-Boff JC, Johnson EJ, Kennedy AD, Lai C-S, Kuchan MJ. Exploratory metabolomic analyses reveal compounds correlated with lutein concentration in frontal cortex, hippocampus, and occipital cortex of human infant brain. PLoS One 2015;10(8):e0136904.
    1. Barnett SM, Khan NA, Walk AM, Raine LB, Moulton C, Cohen NJ, Kramer AF, Hammond BR Jr, Renzi-Hammond L, Hillman CH. Macular pigment optical density is positively associated with academic performance among preadolescent children. Nutr Neurosci 2018;21(9):632–40.
    1. Saint SE, Renzi-Hammond LM, Khan NA, Hillman CH, Frick JE, Hammond BR. The macular carotenoids are associated with cognitive function in preadolescent children. Nutrients 2018;10(2):E193.
    1. Walk AM, Khan NA, Barnett SM, Raine LB, Kramer AF, Cohen NJ, Moulton CJ, Renzi-Hammond LM, Hammond BR, Hillman CH. From neuro-pigments to neural efficiency: the relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood. Int J Psychophysiol 2017;118:1–8.
    1. Marsman A, Egerton A, Broberg B, Poh H. MR spectroscopy in neuropsychiatry. Lausanne, Switzerland: Frontiers Media SA; 2018.
    1. Erdman JW Jr, Smith JW, Kuchan MJ, Mohn ES, Johnson EJ, Rubakhin SS, Wang L, Sweedler JV, Neuringer M. Lutein and brain function. Foods 2015;4(4):547–64.
    1. Friedman J. Why is the nervous system vulnerable to oxidative stress? In: Gadoth N, Göbel HH, editors. Oxidative stress and free radical damage in neurology [Internet]. New York: Humana Press; 2011[cited 4 May, 2017]. p. 19–27. Oxidative Stress in Applied Basic Research and Clinical Practice Available from: .
    1. Reich EE, Markesbery WR, Roberts LJ, Swift LL, Morrow JD, Montine TJ. Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer's disease. Am J Pathol 2001;158(1):293–7.
    1. Krinsky NI, Mayne ST, Sies H. Carotenoids in health and disease. Boca Raton, FL: CRC Press; 2004.
    1. Gruszecki W, Sujak A, Strzalka K, Radunz A, Schmid G. Organisation of xanthophyll-lipid membranes studied by means of specific pigment antisera, spectrophotometry and monomolecular layer technique lutein versus zeaxanthin. Z Naturforschung C J Biosci 1999;54(7–8):517–25.
    1. Rapp LM, Maple SS, Choi JH. Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci 2000;41(5):1200–9.
    1. Wisniewska A, Subczynski WK. Accumulation of macular xanthophylls in unsaturated membrane domains. Free Radic Biol Med 2006;40(10):1820–6.
    1. Farooqui AA, Horrocks LA, Farooqui T. Modulation of inflammation in brain: a matter of fat. J Neurochem 2007;101(3):577–99.
    1. Stahl W, Sies H. Effects of carotenoids and retinoids on gap junctional communication. BioFactors 2001;15(2–4):95–8.
    1. US Department of Agriculture, Agricultural Research Service USDA National Nutrient Database for Standard Reference, release 28 [Internet]. 2015. Available from: .
    1. Unlu NZ, Bohn T, Clinton SK, Schwartz SJ. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J Nutr 2005;135(3):431–6.
    1. Chung H-Y, Rasmussen HM, Johnson EJ. Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. J Nutr 2004;134(8):1887–93.
    1. Johnson E, Vishwanathan R, Mohn E, Haddock J, Rasmussen H, Scott T. Avocado consumption increases neural lutein and improves cognitive function. FASEB J 2015;29(1 Supplement):32.8.
    1. Wenzel AJ, Gerweck C, Barbato D, Nicolosi RJ, Handelman GJ, Curran-Celentano J. A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. J Nutr 2006;136(10):2568–73.
    1. Woo SJ, Park KH, Ahn J, Choe JY, Jeong H, Han JW, Kim TH, Kim KW. Cognitive impairment in age-related macular degeneration and geographic atrophy. Ophthalmology 2012;119(10):2094–101.
    1. Wong TY, Klein R, Nieto FJ, Moraes SAD, Mosley TH, Couper DJ, Klein BE, Boland LL, Hubbard LD, Sharrett AR. Is early age-related maculopathy related to cognitive function? The Atherosclerosis Risk in Communities Study. Am J Ophthalmol 2002;134(6):828–35.
    1. Pham TQ, Kifley A, Mitchell P, Wang JJ. Relation of age-related macular degeneration and cognitive impairment in an older population. Gerontology 2006;52(6):353–8.
    1. Age-Related Eye Disease Study 2 Research Group Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 2013;309(19):2005–15.
    1. Rasmussen HM, Johnson EJ. Nutrients for the aging eye. Clin Interv Aging 2013;8:741–8.
    1. Sherry CL, Oliver JS, Renzi LM, Marriage BJ. Lutein supplementation increases breast milk and plasma lutein concentrations in lactating women and infant plasma concentrations but does not affect other carotenoids. J Nutr 2014;144(8):1256–63.
    1. Jeon S, Neuringer M, Johnson EE, Kuchan MJ, Pereira SL, Johnson EJ, Erdman JW. Effect of carotenoid supplemented formula on carotenoid bioaccumulation in tissues of infant rhesus macaques: a pilot study focused on lutein. Nutrients 2017;9(1):E51.
    1. Bettler J, Zimmer JP, Neuringer M, DeRusso PA. Serum lutein concentrations in healthy term infants fed human milk or infant formula with lutein. Eur J Nutr 2010;49(1):45–51.

Source: PubMed

Подписаться