Do Upper and Lower Camptocormias Affect Gait and Postural Control in Patients with Parkinson's Disease? An Observational Cross-Sectional Study

Christian Geroin, Marialuisa Gandolfi, Isacco Maddalena, Nicola Smania, Michele Tinazzi, Christian Geroin, Marialuisa Gandolfi, Isacco Maddalena, Nicola Smania, Michele Tinazzi

Abstract

Gait impairments and camptocormia (CC) are common and debilitating in patients with Parkinson's disease (PD). Two types of CC affect patients with PD, but no studies investigated their relative contribution in worsening gait and postural control. Therefore, we investigated spatiotemporal gait parameters, gait variability, and asymmetry and postural control in PD patients (Hoehn & Yahr ≤4) with upper CC and lower CC and patients without CC. This observational cross-sectional study involving patients with PD and upper CC (n=16) and lower CC (n=14) and without CC (n=16). The primary outcome measure was gait speed assessed by the GAITRite System. The secondary outcome measures were other spatiotemporal parameters, gait variability, and asymmetry. Postural control and balance were assessed with posturography and the Mini-BESTest. Patients with lower CC showed a higher H&Y stage (p=0.003), a worse PDQ8 (p=0.042), and a lower Mini-BESTest score (p=0.006) than patients with PD without CC. Patients with lower CC showed a reduced gait speed (p=0.012), stride length, and velocity than patients with PD without CC. Upper CC patients showed a higher stride length than lower CC ones (p=0.007). In the eyes open and closed condition, patients with lower CC showed a higher (worse) velocity of CoP displacement in mediolateral direction and length of CoP than patients with PD without CC. No significant between-group differences were measured in gait variability and asymmetry. In conclusion, lower CC was associated with more severe gait and postural control impairment than patients with upper CC and without CC. Categorizing CC based on the bending fulcrum is compulsory to identify patients with the worst performance and to implement specific rehabilitation programs.

Conflict of interest statement

The authors declare that there are no conflicts of interest regarding the publication of this article.

Figures

Figure 1
Figure 1
A patient with lower CC during the gait (a) and posturographic assessment with eyes open (b) and eyes closed condition (c).

References

    1. Nonnekes J., Goselink R. J. M., Růžička E., Fasano A., Nutt J. G., Bloem B. R. Neurological disorders of gait, balance and posture: a sign-based approach. Nature Reviews Neurology. 2018;14(3):183–189. doi: 10.1038/nrneurol.2017.178.
    1. Fasano A., Geroin C., Berardelli A., et al. Diagnostic criteria for camptocormia in Parkinson’s disease: a consensus-based proposal. Parkinsonism & Related Disorders. 2018;53:53–57. doi: 10.1016/j.parkreldis.2018.04.033.
    1. Doherty K. M., van de Warrenburg B. P., Peralta M. C., et al. Postural deformities in Parkinson’s disease. The Lancet Neurology. 2011;10(6):538–549. doi: 10.1016/s1474-4422(11)70067-9.
    1. Srivanitchapoom P., Hallett M. Camptocormia in Parkinson’s disease: definition, epidemiology, pathogenesis and treatment modalities. Journal of Neurology, Neurosurgery & Psychiatry. 2016;87(1):75–85. doi: 10.1136/jnnp-2014-310049.
    1. Peterson D. S., Horak F. B. Neural control of walking in people with parkinsonism. Physiology. 2016;31(2):95–107. doi: 10.1152/physiol.00034.2015.
    1. Schoneburg B., Mancini M., Horak F., Nutt J. G. Framework for understanding balance dysfunction in Parkinson’s disease. Movement Disorders. 2013;28(11):1474–1482. doi: 10.1002/mds.25613.
    1. Lord S., Galna B., Verghese J., Coleman S., Burn D., Rochester L. Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2013;68(7):820–827. doi: 10.1093/gerona/gls255.
    1. Geroin C., Smania N., Schena F., et al. Does the Pisa syndrome affect postural control, balance, and gait in patients with Parkinson’s disease? An observational cross-sectional study. Parkinsonism & Related Disorders. 2015;21(7):736–741. doi: 10.1016/j.parkreldis.2015.04.020.
    1. Tramonti C., Di Martino S., Unti E., et al. Gait dynamics in Pisa syndrome and camptocormia: the role of stride length and hip kinematics. Gait & Posture. 2017;57:130–135. doi: 10.1016/j.gaitpost.2017.05.029.
    1. Margraf N. G., Wolke R., Granert O., et al. Consensus for the measurement of the camptocormia angle in the standing patient. Parkinsonism & Related Disorders. 2018;52:1–5. doi: 10.1016/j.parkreldis.2018.06.013.
    1. Postuma R. B., Berg D., Stern M., et al. MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders. 2015;30(12):1591–1601. doi: 10.1002/mds.26424.
    1. Foltynie T., Brayne C., Barker R. A. The heterogeneity of idiopathic Parkinson’s disease. Journal of Neurology. 2002;249(2):138–145. doi: 10.1007/pl00007856.
    1. Hoops S., Nazem S., Siderowf A. D., et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology. 2009;73(21):1738–1745. doi: 10.1212/wnl.0b013e3181c34b47.
    1. Jenkinson C., Fitzpatrick R. Cross-cultural evaluation of the short form 8-item Parkinson’s disease questionnaire (PDQ-8): results from America, Canada, Japan, Italy and Spain. Parkinsonism & Related Disorders. 2007;13(1):22–28. doi: 10.1016/j.parkreldis.2006.06.006.
    1. Gibson M. J. S., Andres R. O., Kennedy T. E., Coppard L. C. The prevention of falls in later life. A report of the kellogg international work group on the prevention of falls by the elderly. Danish Medical Bulletin. 1987;34(S4):1–24.
    1. King L., Horak F. On the mini-BESTest: scoring and the reporting of total scores. Physical Therapy. 2013;93(4):571–575. doi: 10.2522/ptj.2013.93.4.571.
    1. Lord S., Galna B., Rochester L. Moving forward on gait measurement: toward a more refined approach. Movement Disorders. 2013;28(11):1534–1543. doi: 10.1002/mds.25545.
    1. Hausdorff J. M. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Human Movement Science. 2007;26(4):557–589. doi: 10.1016/j.humov.2007.05.003.
    1. Hausdorff J. M., Cudkowicz M. E., Firtion R., Wei J. Y., Goldberger A. L. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders. 1998;13(3):428–437. doi: 10.1002/mds.870130310.
    1. Maki B. E. Gait changes in older adults: predictors of falls or indicators of fear? Journal of the American Geriatrics Society. 1997;45(3):313–320. doi: 10.1111/j.1532-5415.1997.tb00946.x.
    1. Furusawa Y., Mukai Y., Kobayashi Y., Sakamoto T., Murata M. Role of the external oblique muscle in upper camptocormia for patients with Parkinson’s disease. Movement Disorders. 2012;27(6):802–803. doi: 10.1002/mds.24930.
    1. Furusawa Y., Mukai Y., Kawazoe T., et al. Long-term effect of repeated lidocaine injections into the external oblique for upper camptocormia in Parkinson’s disease. Parkinsonism & Related Disorders. 2013;19(3):350–354. doi: 10.1016/j.parkreldis.2012.09.008.
    1. Furusawa Y., Hanakawa T., Mukai Y., et al. Mechanism of camptocormia in Parkinson’s disease analyzed by tilt table-EMG recording. Parkinsonism & Related Disorders. 2015;21(7):765–770. doi: 10.1016/j.parkreldis.2015.02.027.
    1. Siccardi M. A., Valle C. Anatomy, Bony Pelvis and Lower Limb, Psoas Major. Treasure Island, FL, USA: StatPearls Publishing; 2019.
    1. Geroin C., Nonnekes J., de Vries N. M., et al. Does dual-task training improve spatiotemporal gait parameters in Parkinson’s disease? Parkinsonism & Related Disorders. 2018;55:86–91. doi: 10.1016/j.parkreldis.2018.05.018.
    1. Hausdorff J. M. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2009;19(2) doi: 10.1063/1.3147408.026113
    1. Hollman J. H., McDade E. M., Petersen R. C. Normative spatiotemporal gait parameters in older adults. Gait & Posture. 2011;34(1):111–118. doi: 10.1016/j.gaitpost.2011.03.024.

Source: PubMed

Подписаться