EEG as a translational biomarker and outcome measure in fragile X syndrome

Aisling Kenny, Damien Wright, Andrew C Stanfield, Aisling Kenny, Damien Wright, Andrew C Stanfield

Abstract

Targeted treatments for fragile X syndrome (FXS) have frequently failed to show efficacy in clinical testing, despite success at the preclinical stages. This has highlighted the need for more effective translational outcome measures. EEG differences observed in FXS, including exaggerated N1 ERP amplitudes, increased resting gamma power and reduced gamma phase-locking in the sensory cortices, have been suggested as potential biomarkers of the syndrome. These abnormalities are thought to reflect cortical hyper excitability resulting from an excitatory (glutamate) and inhibitory (GABAergic) imbalance in FXS, which has been the target of several pharmaceutical remediation studies. EEG differences observed in humans also show similarities to those seen in laboratory models of FXS, which may allow for greater translational equivalence and better predict clinical success of putative therapeutics. There is some evidence from clinical trials showing that treatment related changes in EEG may be associated with clinical improvements, but these require replication and extension to other medications. Although the use of EEG characteristics as biomarkers is still in the early phases, and further research is needed to establish its utility in clinical trials, the current research is promising and signals the emergence of an effective translational biomarker.

Conflict of interest statement

Andrew Stanfield has received grant funding from Novartis and Roche, including for trials of mGluR5 antagonists in fragile X syndrome. Aisling Kenny and Damien Wright declare no conflict of interest.

© 2022. The Author(s).

Figures

Fig. 1. Example of N1 ERP in…
Fig. 1. Example of N1 ERP in response to standard and deviant tone presentation in auditory oddball task for FXS and for controls.
A The exaggerated N1 amplitude (reported in microvolts (μV), across time (ms)) response to both standard and oddball tones as observed in FXS. B The neurotypical control response; exaggerated N1 amplitude to oddball tone, but attenuated N1 amplitude to the repeated standard tone.

References

    1. Crawford DC, Acuña JM, Sherman SL. FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med. 2001;3:359–71. doi: 10.1097/00125817-200109000-00006..
    1. Ezell J, Hogan A, Fairchild A, Hills K, Klusek J, Abbeduto L, et al. Prevalence and predictors of anxiety disorders in adolescent and adult males with autism spectrum disorder and Fragile X syndrome. J Autism Dev Disord. 2019;49:1131–41. doi: 10.1007/s10803-018-3804-6..
    1. Cordeiro L, Ballinger E, Hagerman R, Hessl D. Clinical assessment of DSM-IV anxiety disorders in fragile X syndrome: prevalence and characterization. J Neurodev Disord. 2011;3:57–67. doi: 10.1007/s11689-010-9067-y..
    1. Sullivan K, Hatton D, Hammer J, Sideris J, Hooper S, Ornstein P, et al. ADHD symptoms in children with FXS. Am J Med. Genet Part A. 2006;140A:2275–88. doi: 10.1002/ajmg.a.31388..
    1. Newman I, Leader G, Chen JL, Mannion A. An analysis of challenging behavior, comorbid psychopathology, and attention-deficit/hyperactivity disorder in Fragile X syndrome. Res Dev Disabil. 2015;38:7–17. doi: 10.1016/j.ridd.2014.11.003..
    1. Cornish K, Scerif G, Karmiloffsmith A. Tracing syndrome-specific trajectories of attention across the lifespan. Cortex. 2007;43:672–85. doi: 10.1016/s0010-9452(08)70497-0..
    1. Richdale AL. A descriptive analysis of sleep behaviour in children with Fragile X. J Intell Dev Disabil. 2003;28:135–44. doi: 10.1080/1366825031000147076..
    1. Kronk R, Bishop EE, Raspa M, Bickel JO, Mandel DA, Bailey DB., Jr Prevalence, nature, and correlates of sleep problems Among children with Fragile X syndrome based on a large scale parent survey. Sleep. 2010;33:679–87. doi: 10.1093/sleep/33.5.679..
    1. Berry-Kravis E. Epilepsy in fragile X syndrome. Dev Med Child Neurol. 2002;44:724–8. doi: 10.1017/s0012162201002833..
    1. Abbeduto L, Thurman AJ, McDuffie A, Klusek J, Feigles RT, Brown WT, et al. ASD Comorbidity in Fragile X syndrome: symptom profile and predictors of symptom severity in adolescent and young adult males. J Autism Dev Disord. 2019;49:960–77. doi: 10.1007/s10803-018-3796-2..
    1. Sinclair D, Oranje B, Razak KA, Siegel SJ, Schmid S. Sensory processing in autism spectrum disorders and Fragile X syndrome—from the clinic to animal models. Neurosci Biobehav Rev. 2017b;76:235–53. 10.1016/j.neubiorev.2016.05.029.
    1. Martin GE, Roberts JE, Helm-Estabrooks N, Sideris J, Vanderbilt J, Moskowitz L. Perseveration in the connected speech of boys with Fragile X syndrome with and without autism spectrum disorder. Am J Intellect Dev Disabil. 2012;117:384–99. doi: 10.1352/1944-7558-117.5.384..
    1. Budimirovic DB, Kaufmann WE. What Can We Learn about Autism from Studying Fragile X Syndrome? Dev Neurosci. 2011;33:379–94. doi: 10.1159/000330213..
    1. Kaufmann WE, Kidd SA, Andrews HF, Budimirovic DB, Esler A, Haas-Givler B, et al. Autism spectrum disorder in Fragile X Syndrome: cooccurring conditions and current treatment. Pediatrics. 2017;139:S194–S206. doi: 10.1542/peds.2016-1159f..
    1. Kazdoba TM, Leach PT, Silverman JL, Crawley JN. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res. 2014;3:118–33. doi: 10.5582/irdr.2014.01024..
    1. Kooy RF, D’Hooge R, Reyniers E, Bakker CE, Nagels G, De Boulle K, et al. Transgenic mouse model for the fragile X syndrome. Am J Med Genet. 1996;64:241–5. doi: 10.1002/(SICI)1096-8628(19960809)64:2<241::AID-AJMG1>;2-X.
    1. Nimchinsky EA, Oberlander AM, Svoboda K. Abnormal development of dendritic spines inFMR1knock-out mice. J Neurosci. 2001;21:5139–46. doi: 10.1523/jneurosci.21-14-05139.2001..
    1. McKinney BC, Grossman AW, Elisseou NM, Greenough WT. Dendritic spine abnormalities in the occipital cortex of C57BL/6Fmr1 knockout mice. Am J Med Genet Part B: Neuropsychiatr Genet. 2005;136B:98–102. doi: 10.1002/ajmg.b.30183..
    1. Grossman AW, Elisseou NM, McKinney BC, Greenough WT. Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines. Brain Res. 2006;1084:158–64. doi: 10.1016/j.brainres.2006.02.044..
    1. Ventura R, Pascucci T, Catania MV, Musumeci SA, Puglisi-Allegra S. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav Pharmacol. 2004;15:433–42. doi: 10.1097/00008877-200409000-00018..
    1. Krueger DD, Osterweil EK, Chen SP, Tye LD, Bear MF. Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA. 2011;108:2587–92. doi: 10.1073/pnas.1013855108..
    1. Ding Q, Sethna F, Wang H. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background. Behav Brain Res. 2014;271:72–78. doi: 10.1016/j.bbr.2014.05.046..
    1. Dolan BM, Duron SG, Campbell DA, Vollrath B, Rao BS, Ko HY, et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc Natl Acad Sci USA. 2013;110:5671–6. doi: 10.1073/pnas.1219383110..
    1. Pietropaolo S, Guilleminot A, Martin B, D’Amato FR, Crusio WE. Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice. PLoS ONE. 2011;6:e17073. doi: 10.1371/journal.pone.0017073..
    1. Chen L, Toth M. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience. 2001;103:1043–50. doi: 10.1016/s0306-4522(01)00036-7..
    1. Budimirovic DB, Berry-Kravis E, Erickson CA, Hall SS, Hessl D, Reiss AL, et al. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J Neurodev Disord. 2017;9:1–36. doi: 10.1186/s11689-017-9193-x..
    1. Sur S, Sinha VK. Event-related potential: an overview. Ind psychiatry J. 2009;18:70. doi: 10.4103/0972-6748.57865..
    1. St. Clair DM, Blackwood DHR, Oliver CJ, Dickens P. P3 Abnormality in fragile X syndrome. Biol Psychiatry. 1987;22:303–12. doi: 10.1016/0006-3223(87)90148-x..
    1. Ethridge LE. Auditory EEG biomarkers in Fragile X syndrome: clinical relevance. Front Integr Neurosci. 2019;13:60. doi: 10.3389/fnint.2019.00060/abstract..
    1. Van Der Molen MJW, Van der Molen MW, Ridderinkhof KR, Hamel BCJ, Curfs LMG & Ramakers GJA. Auditory change detection in fragile X syndrome males: A brain potential study. 2012;123:1309-18, 10.1016/j.clinph.2011.11.039.
    1. Ethridge LE, White SP, Mosconi MW, Wang J, Byerly MJ, Sweeney JA. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Trans Psychiatry. 2016;6:e787–e787. 10.1038/tp.2016.48.
    1. Van Der Molen MJW, Van der Molen MW, Ridderinkhof KR, Hamel BCJ, Curfs LMG, Ramakers GJA. Auditory and visual cortical activity during selective attention in fragile X syndrome: A cascade of processing deficiencies. Clin Neurophysiol. 2012;123:720–9. doi: 10.1016/j.clinph.2011.08.023..
    1. Knoth IS, Vannasing P, Major P, Michaud JL, Lippé S. Alterations of visual and auditory evoked potentials in fragile X syndrome. Int J Dev Neurosci. 2014;36:90–97. doi: 10.1016/j.ijdevneu.2014.05.003..
    1. Côté V, Lalancette È, Knoth IS, Côté L, Agbogba K, Vannasing P, et al. Distinct patterns of repetition suppression in Fragile X syndrome, down syndrome, tuberous sclerosis complex and mutations in SYNGAP1. Brain Res. 2021;175:147205. doi: 10.1016/j.brainres.2020.147205.
    1. Rigoulot S, Knoth IS, Lafontaine MP, Vannasing P, Major P, Jacquemont S, et al. Altered visual repetition suppression in Fragile X Syndrome: New evidence from ERPs and oscillatory activity. Int J Dev Neurosci. 2017;59:52–59. doi: 10.1016/j.ijdevneu.2017.03.008..
    1. Hinojosa JA, Mercado F, Carretié L. N170 sensitivity to facial expression: A meta-analysis. Neurosci Biobehav Rev. 2015;55:498–509. doi: 10.1016/j.neubiorev.2015.06.002..
    1. Henson RNA, Rugg MD. Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia. 2003;41:263–70. doi: 10.1016/s0028-3932(02)00159-8..
    1. Castrén M, Pääkkönen A, Tarkka IM, Ryynänen M, Partanen J. Augmentation of auditory N1 in children with fragile X syndrome. Brain Topogr. 2003;15:165–71. doi: 10.1023/A:1022606200636.
    1. Huang J, Hensch T, Ulke C, Sander C, Spada J, Jawinski P, et al. Evoked potentials and behavioral performance during different states of brain arousal. BMC Neurosci. 2017;18:1–11. doi: 10.1186/s12868-017-0340-9..
    1. Boccia ML, Roberts JE. Behavior and autonomic nervous system function assessed via heart period measures: the case of hyperarousal in boys with fragile X syndrome. Behav Res Methods Instrum Comput. 2000;32:5–10. doi: 10.3758/bf03200783..
    1. Hall SS, Lightbody AA, Huffman LC, Lazzeroni LC, Reiss AL. Physiological correlates of social avoidance behavior in children and adolescents with Fragile X syndrome. J Am Acad Child Adolesc Psychiatry. 2009;48:320–9. doi: 10.1097/chi.0b013e318195bd15..
    1. Cornish K, Sudhalter V, Turk J. Attention and language in fragile X. Ment Retard Dev Disabil Res Rev. 2004;10:11–16. doi: 10.1002/mrdd.20003..
    1. Schneider A, Leigh MJ, Adams P, Nanakul R, Chechi T, Olichney J, et al. Electrocortical changes associated with minocycline treatment in fragile X syndrome. J Psychopharmacol. 2013;27:956–63. doi: 10.1177/0269881113494105..
    1. Morokuma S, F. K, Kawai N, Tomonaga M, Satoh S, Nakano H. Fetal habituation correlates with functional brain development. Behav Brain Res. 2004;153:459–63. doi: 10.1016/j.bbr.2004.01.002..
    1. Knoth IS, Lippé S. Event-related potential alterations in fragile X syndrome. Front Hum Neurosci. 2012;6:264. doi: 10.3389/fnhum.2012.00264..
    1. Ethridge L, Thaliath A, Kraff J, Nijhawan K, Berry-Kravis E. Development of neural response to novel sounds in Fragile X syndrome: potential biomarkers. Am J Intellect Developmental Disabilities. 2020;125:449–64. doi: 10.1352/1944-7558-125.6.449..
    1. Bettler B, Tiao JY-H. Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther. 2006;110:533–43. doi: 10.1016/j.pharmthera.2006.03.006..
    1. Braat S, D’Hulst C, Heulens I, De Rubeis S, Mientjes E, Nelson DL, et al. The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle. 2015;14:2985–95. doi: 10.4161/15384101.2014.989114..
    1. Davidovic L, Navratil V, Bonaccorso CM, Catania MV, Bardoni B, Dumas ME. A metabolomic and systems biology perspective on the brain of the Fragile X syndrome mouse model. Genome Res. 2011;21:2190–202. doi: 10.1101/gr.116764.110..
    1. Olmos-Serrano JL, Paluszkiewicz SM, Martin BS, Kaufmann WE, Corbin JG, Huntsman MM. Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of Fragile X syndrome. J Neurosci. 2010;30:9929–38. doi: 10.1523/jneurosci.1714-10.2010..
    1. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004;27:370–7. doi: 10.1016/j.tins.2004.04.009..
    1. Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA. 2002;99:7746–50. doi: 10.1073/pnas.122205699..
    1. Hagerman R, Jacquemont S, Berry-Kravis E, Des Portes V, Stanfield A, Koumaras B, et al. Mavoglurant in Fragile X Syndrome: results of two open-label, extension trials in adults and adolescents. Sci Rep. 2018;8:1–9. doi: 10.1038/s41598-018-34978-4..
    1. Erickson CA, Wink LK, Ray B, Early MC, Stiegelmeyer E, Mathieu-Frasier L, et al. Impact of acamprosate on behavior and brain-derived neurotrophic factor: an open-label study in youth with fragile X syndrome. Psychopharmacology. 2013;228:75–84. doi: 10.1007/s00213-013-3022-z..
    1. Berry-Kravis E, Hagerman R, Visootsak J, Budimirovic D, Kaufmann WE, Cherubini M, et al. Arbaclofen in fragile X syndrome: results of phase 3 trials. J Neurodev Disord. 2017;9:1–18. doi: 10.1186/s11689-016-9181-6..
    1. Herrmann CS, Fründ I, Lenz D. Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev. 2010;34:981–92. doi: 10.1016/j.neubiorev.2009.09.001..
    1. Rojas DC, Wilson LB. γ-band abnormalities as markers of autism spectrum disorders. Biomark Med. 2014;8:353–68. doi: 10.2217/bmm.14.15..
    1. McNally JM, McCarley RW. Gamma band oscillations. Curr Opin Psychiatry. 2016;29:202–10. doi: 10.1097/yco.0000000000000244..
    1. Mably AJ, Colgin LL. Gamma oscillations in cognitive disorders. Curr Opin Neurobiol. 2018;52:182–7. doi: 10.1016/j.conb.2018.07.009..
    1. Barry RJ, Clarke AR, Hajos M, McCarthy R, Selikowitz M, Dupuy FE. Resting-state EEG gamma activity in children with attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2010;121:1871–7. doi: 10.1016/j.clinph.2010.04.022..
    1. Buzsáki G, Wang X-J. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25. doi: 10.1146/annurev-neuro-062111-150444..
    1. Moran LV, Hong LE. High vs low frequency neural oscillations in schizophrenia. Schizophrenia Bull. 2011;37:659–63. doi: 10.1093/schbul/sbr056..
    1. Ray S, Maunsell JHR. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 2011;9:e1000610. doi: 10.1371/journal.pbio.1000610..
    1. Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;315:1860–2. doi: 10.1126/science.1138071..
    1. Buzsáki G, Schomburg EW. What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci. 2015;18:484–9. doi: 10.1038/nn.3952..
    1. Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsaki G. Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci. 2012;32:423–35. doi: 10.1523/jneurosci.4122-11.2012..
    1. Cornew L, Roberts TP, Blaskey L, Edgar JC. Resting-state oscillatory activity in autism spectrum disorders. J Autism Developmental Disord. 2012;49:1884–94. doi: 10.1007/s10803-011-1431-6.
    1. Machado C, Estévez M, Leisman G, Melillo R, Rodríguez R, DeFina P, et al. QEEG spectral and coherence assessment of autistic children in three different experimental conditions. J Autism Dev Disord. 2015;45:406-24, 10.1007/s10803-013-1909-5.
    1. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain Behav. 2003;2:255–67. doi: 10.1034/j.1601-183x.2003.00037.x..
    1. Brunet NM, Bosman CA, Vinck M, Roberts M, Oostenveld R, Desimone R, et al. Stimulus repetition modulates gamma-band synchronization in primate visual cortex. Proc Natl Acad Sci USA. 2014;111:3626–31. doi: 10.1073/pnas.1309714111..
    1. Ethridge, LE, White, SP, Mosconi, MW, Wang, J, Pedapati, EV, Erickson, CA, et al. Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism 2017;8, 10.1186/s13229-017-0140-1.
    1. Wang J, Ethridge LE, Mosconi MW, White SP, Binder DK, Pedapati EV, et al. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome. J Neurodev Disord. 2017;9:1–12. doi: 10.1186/s11689-017-9191-z..
    1. Van Der Molen MJW, Van Der Molen MW. Reduced alpha and exaggerated theta power during the resting-state EEG in fragile X syndrome. J Neurodev Disord. 2013;92:216–9. doi: 10.1016/j.biopsycho.2012.11.013..
    1. Van Der Molen MJW, Stam CJ, Van Der Molen MW. Resting-state EEG oscillatory dynamics in Fragile X syndrome: abnormal functional connectivity and brain network organization. PLoS ONE. 2014;9:e88451. doi: 10.1371/journal.pone.0088451..
    1. Von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38:301–13. doi: 10.1016/s0167-8760(00)00172-0..
    1. Jensen O, Spaak E & Zumer JM in Magnetoencephalography: From Signals to Dynamic Cortical Networks (eds Selma Supek & Cheryl J Aine) Springer International Publishing, 2019;1–46.
    1. Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol. 2000;38:315–36. doi: 10.1016/s0167-8760(00)00173-2..
    1. Börgers C, Kopell N. Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput. 2003;15:509–38. doi: 10.1162/089976603321192059..
    1. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702. doi: 10.1038/nature07991..
    1. Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, LeBeau FE, Bannerman DM, et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron. 2007;53:591–604. doi: 10.1016/j.neuron.2007.01.031..
    1. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007;8:45–56. doi: 10.1038/nrn2044..
    1. Szabadics J, Lorincz A, Tamás G. β and γ frequency synchronization by dendritic GABAergic synapses and gap junctions in a network of cortical interneurons. J Neurosci. 2001;21:5824–31. doi: 10.1523/JNEUROSCI.21-15-05824.2001.
    1. Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron. 2005;47:423–35. doi: 10.1016/j.neuron.2005.06.016..
    1. Tamás G, Buhl EH, Lörincz A, Somogyi P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci. 2000;3:366–71. doi: 10.1038/73936..
    1. Klausberger T, Magill PJ, Márton LF, Roberts JDB, Cobden PM, Buzsáki G, et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature. 2003;421:844–8. doi: 10.1038/nature01374..
    1. Patel AB, Hays SA, Bureau I, Huber KM, Gibson JR. A target cell-specific role for presynaptic Fmr1 in regulating glutamate release onto neocortical fast-spiking inhibitory neurons. J Neurosci. 2013;33:2593–604. doi: 10.1523/jneurosci.2447-12.2013..
    1. Selby L, Zhang C, Sun Q-Q. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci Lett. 2007;412:227–32. doi: 10.1016/j.neulet.2006.11.062..
    1. Paluszkiewicz SM, Olmos-Serrano JL, Corbin JG, Huntsman MM. Impaired inhibitory control of cortical synchronization in fragile X syndrome. J Neurophysiol. 2011;106:2264–72. doi: 10.1152/jn.00421.2011..
    1. Goswami S, Cavalier S, Sridhar V, Huber KM, Gibson JR. Local cortical circuit correlates of altered EEG in the mouse model of Fragile X syndrome. Neurobiol Dis. 2019;124:563–72. doi: 10.1016/j.nbd.2019.01.002..
    1. Berzhanskaya J, Phillips MA, Gorin A, Lai C, Shen J, Colonnese MT. Disrupted cortical state regulation in a rat model of Fragile X syndrome. Cereb Cortex. 2016;27:bhv331. doi: 10.1093/cercor/bhv331..
    1. Contractor A, Vitaly, Portera-Cailliau C. Altered neuronal and circuit excitability in Fragile X syndrome. Neuron. 2015;87:699–715. doi: 10.1016/j.neuron.2015.06.017..
    1. Zhang Y, Bonnan A, Bony G, Ferezou I, Pietropaolo S, Ginger M, et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1−/y mice. Nat Neurosci. 2014;17:1701–9. doi: 10.1038/nn.3864..
    1. Rais M, Binder DK, Razak KA, Ethell IM. Sensory processing phenotypes in Fragile X syndrome. ASN Neuro. 2018;10:175909141880109. doi: 10.1177/1759091418801092..
    1. Gibson JR, Bartley AF, Hays SA, Huber KM. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of Fragile X syndrome. J Neurophysiol. 2008;100:2615–26. doi: 10.1152/jn.90752.2008..
    1. Hays SA, Huber KM, Gibson JR. Altered neocortical rhythmic activity states in Fmr1 KO mice are due to enhanced mGluR5 signaling and involve changes in excitatory circuitry. J Neurosci. 2011;31:14223–34. doi: 10.1523/jneurosci.3157-11.2011..
    1. Fanselow EE, Connors BW. The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in UP-DOWN states of mouse neocortex. J Neurophysiol. 2010;104:596–606. doi: 10.1152/jn.00206.2010.
    1. Lovelace JW, Wen TH, Reinhard S, Hsu MS, Sidhu H, Ethell IM, et al. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X syndrome. Neurobiol Dis. 2016;89:126–35. doi: 10.1016/j.nbd.2016.02.002..
    1. Arbab T, Battaglia FP, Pennartz CMA, Bosman CA. Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of Fragile X syndrome. Neurobiol Dis. 2018;114:65–73. doi: 10.1016/j.nbd.2018.02.011..
    1. Lovelace JW, Ethell IM, Binder DK, Razak KA. Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome. Neurobiol Dis. 2018;115:39–48. doi: 10.1016/j.nbd.2018.03.012..
    1. Sinclair D, Featherstone R, Naschek M, Nam J, Du A, Wright S, et al. GABA-B Agonist baclofen normalizes auditory-evoked neural oscillations and behavioral deficits in the Fmr1 knockout mouse model of Fragile X syndrome. eNeuro 2017a;4, 10.1523/eneuro.0380-16.2017.
    1. Kozono N, Okamura A, Honda S, Matsumoto M, Mihara T. Gamma power abnormalities in a Fmr1-targeted transgenic rat model of fragile X syndrome. Sci Rep. 2020;10:1–9. doi: 10.1038/s41598-020-75893-x..
    1. Jonak CR, Lovelace JW, Ethell IM, Razak KA, Binder DK. Multielectrode array analysis of EEG biomarkers in a mouse model of Fragile X Syndrome. Neurobiol Dis. 2020;138:104794. doi: 10.1016/j.nbd.2020.104794..
    1. Dölen G, Osterweil E, Rao BSS, Smith GB, Auerbach BD, Chattarji S, et al. Correction of Fragile X syndrome in mice. Neuron. 2007;56:955–62. doi: 10.1016/j.neuron.2007.12.001..
    1. Thomas AM, Bui N, Graham D, Perkins JR, Yuva-Paylor LA, Paylor R. Genetic reduction of group 1 metabotropic glutamate receptors alters select behaviors in a mouse model for fragile X syndrome. Behavioural Brain Res. 2011;223:310–21. doi: 10.1016/j.bbr.2011.04.049..
    1. Westmark PR, Dekundy A, Gravius A, Danysz W, Westmark CJ. Rescue of Fmr1 phenotypes with mGluR5 inhibitors: MRZ-8456 versus AFQ-056. Neurobiol Dis. 2018;119:190–8. doi: 10.1016/j.nbd.2018.08.008..
    1. De Esch CEF, van Den Berg WE, Buijsen RAM, Jaafar IA, Nieuwenhuizen-Bakker IM, Gasparini F, et al. Fragile X mice have robust mGluR5-dependent alterations of social behaviour in the Automated Tube Test. Neurobiol Dis. 2015;75:31–39. doi: 10.1016/j.nbd.2014.12.021..
    1. Pop AS, Levenga J, de Esch CE, Buijsen RA, Nieuwenhuizen IM, Li T, et al. Rescue of dendritic spine phenotype in Fmr1 KO mice with the mGluR5 antagonist AFQ056/Mavoglurant. Psychopharmacology. 2014;231:1227–35. doi: 10.1007/s00213-012-2947-y.
    1. Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP. Suppression of two major Fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology. 2005;49:1053–66. doi: 10.1016/j.neuropharm.2005.06.004..
    1. Thomas AM, Bui N, Perkins JR, Yuva-Paylor LA, Paylor R. Group I metabotropic glutamate receptor antagonists alter select behaviors in a mouse model for fragile X syndrome. Psychopharmacology. 2012;219:47–58. doi: 10.1007/s00213-011-2375-4..
    1. Su T, Fan HX, Jiang T, Sun WW, Den WY, Gao MM, et al. Early continuous inhibition of group 1 mGlu signaling partially rescues dendritic spine abnormalities in the Fmr1 knockout mouse model for fragile X syndrome. Psychopharmacology. 2011;215:291–300. doi: 10.1007/s00213-010-2130-2..
    1. De Vrij FMS, Levenga J, Van der Linde HC, Koekkoek SK, De Zeeuw CI, Nelson DL, et al. Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis. 2008;31:127–32. doi: 10.1016/j.nbd.2008.04.002..
    1. Vinueza Veloz MF, Buijsen RAM, Willemsen R, Cupido A, Bosman LW, Koekkoek SK, et al. The effect of an mGluR5 inhibitor on procedural memory and avoidance discrimination impairments inFmr1KO mice. Genes Brain Behav. 2012;11:325–31. doi: 10.1111/j.1601-183x.2011.00763.x..
    1. Berry-Kravis E, Des Portes V, Hagerman R, Jacquemont S, Charles P, Visootsak J, et al. Mavoglurant in fragile X syndrome: Results of two randomized, double-blind, placebo-controlled trials. Sci Transl Med. 2016;8:321ra325–321ra325. doi: 10.1126/scitranslmed.aab4109..
    1. Bailey DB, Berry-Kravis E, Wheeler A, Raspa M, Merrien F, Ricart J, et al. Mavoglurant in adolescents with fragile X syndrome: analysis of clinical global impression-improvement source data from a double-blind therapeutic study followed by an open-label, long-term extension study. J Neurodev Disord. 2016;8:1–10. doi: 10.1186/s11689-015-9134-5..
    1. Youssef EA, Berry-Kravis E, Czech C, Hagerman RJ, Hessl D, Wong CY, et al. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with Fragile X syndrome in a randomized, double-blind, placebo-controlled trial: FragXis phase 2 results. Neuropsychopharmacology. 2018;43:503–12. doi: 10.1038/npp.2017.177..
    1. Pacey LKK, Heximer SP, Hampson DR. Increased GABAB receptor-mediated signaling reduces the susceptibility of Fragile X knockout mice to audiogenic seizures. Mol Pharmacol. 2009;76:18–24. doi: 10.1124/mol.109.056127..
    1. Henderson C, Wijetunge L, Kinoshita MN, Shumway M, Hammond RS, Postma FR, et al. Reversal of disease-related pathologies in the Fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci Transl Med. 2012;4:152ra128–152ra151. doi: 10.1126/scitranslmed.3004218..
    1. Qin, M, Huang, T, Kader, M, Krych, L, Xia, Z, Burlin, T, et al. R-Baclofen Reverses a Social Behavior Deficit and Elevated Protein Synthesis in a Mouse Model of Fragile X Syndrome. Int J Neuropsychopharmacology. 2015;18, 10.1093/ijnp/pyv034.
    1. Erickson CA, Ray B, Maloney B, Wink LK, Bowers K, Schaefer TL, et al. Impact of acamprosate on plasma amyloid-β precursor protein in youth: A pilot analysis in fragile X syndrome-associated and idiopathic autism spectrum disorder suggests a pharmacodynamic protein marker. J Psychiatr Res. 2014;59:220–8. doi: 10.1016/j.jpsychires.2014.07.011.
    1. Berry-Kravis EM, Hessl D, Rathmell B, Zarevics P, Cherubini M, Walton-Bowen K, et al. Effects of STX209 (Arbaclofen) on neurobehavioral function in children and adults with Fragile X syndrome: a randomized, Controlled, Phase 2 Trial. Sci Transl Med. 2012;4:152ra127–152ra112. doi: 10.1126/scitranslmed.3004214..
    1. Liu Z-H, Chuang D-M, Smith CB. Lithium ameliorates phenotypic deficits in a mouse model of fragile X syndrome. Int J Neuropsychopharmacol. 2011;14:618–30. doi: 10.1017/s1461145710000520..
    1. Yuskaitis CJ, Mines MA, King MK, Sweatt JD, Miller CA, Jope RS, et al. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of Fragile X syndrome. Biochemical Pharmacol. 2010;79:632–46. doi: 10.1016/j.bcp.2009.09.023..
    1. Peier AM. (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. Hum Mol Genet. 2000;9:1145–59. doi: 10.1093/hmg/9.8.1145..
    1. Lister R. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology. 1987;92:180–5. doi: 10.1007/bf00177912..
    1. Heulens I, D’Hulst C, Van Dam D, De Deyn PP, Kooy RF. Pharmacological treatment of fragile X syndrome with GABAergic drugs in a knockout mouse model. Behavioural Brain Res. 2012;229:244–9. doi: 10.1016/j.bbr.2012.01.031..
    1. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2:322–8. doi: 10.1038/nprot.2007.44..
    1. Luu S, Province H, Berry-Kravis E, Hagerman R, Hessl D, Vaidya D, et al. Response to placebo in Fragile X syndrome clinical trials: an initial analysis. Brain Sci. 2020;10:629. doi: 10.3390/brainsci10090629..
    1. Sansone SM, Widaman KF, Hall SS, Reiss AL, Lightbody A, Kaufmann WE, et al. Psychometric study of the aberrant behavior checklist in Fragile X syndrome and implications for targeted treatment. J Autism dev Disord. 2012;42:1377–92. doi: 10.1007/s10803-011-1370-2..
    1. Jacquemont S, Berry-Kravis E, Hagerman R, Von Raison F, Gasparini F, Apostol G, et al. The challenges of clinical trials in fragile X syndrome. Psychopharmacology. 2014;231:1237–50. doi: 10.1007/s00213-013-3289-0..
    1. Erickson CA, Stigler KA, Wink LK, Mullett JE, Kohn A, Posey DJ, et al. A prospective open-label study of aripiprazole in fragile X syndrome. Psychopharmacology. 2011;216:85–90. doi: 10.1007/s00213-011-2194-7..
    1. Veenstra-Vanderweele JJ, Cook EH, King BH, Zarevics P, Cherubini M, Walton-Bowen K, et al. Arbaclofen in children and adolescents with autism spectrum disorder: a randomized, controlled, phase 2 trial. Neuropsychopharmacology. 2017;42:1390–8. doi: 10.1038/npp.2016.237..
    1. Jacquemont S, Curie A, Des Portes V, Torrioli MG, Berry-Kravis E, Hagerman RJ, et al. Epigenetic modification of the FMR1 gene in Fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med. 2011;3:64ra61–64ra61. doi: 10.1126/scitranslmed.3001708..
    1. Leigh MJS, Nguyen DV, Mu Y, Winarni TI, Schneider A, Chechi T, et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with Fragile X syndrome. J Dev Behav Pediatrics. 2013;34:147–55. doi: 10.1097/dbp.0b013e318287cd17..
    1. Schaefer TL, Davenport MH, Grainger LM, Robinson CK, Earnheart AT, Stegman MS, et al. Acamprosate in a mouse model of fragile X syndrome: modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. J Neurodev Disord. 2017;9:1–22. doi: 10.1186/s11689-017-9184-y.
    1. Jonak CR, Sandhu MS, Assad SA, Barbosa JA, Makhija M, & Binder DK. The PDE10A Inhibitor TAK-063 reverses sound-evoked EEG abnormalities in a mouse model of Fragile X syndrome. Neurotherapeutics. 2021;1–13, 10.1007/s13311-021-01005-w (2021).
    1. Berry-Kravis E, Hicar M, Ciurlionis R. Reduced cyclic AMP production in Fragile X syndrome: cytogenetic and molecular correlations. Pediatr Res. 1995;38:638–43. doi: 10.1203/00006450-199511000-00002..
    1. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009;46:94–102. doi: 10.1136/jmg.2008.061796..
    1. Sidhu H, Dansie LE, Hickmott PW, Ethell DW, Ethell IM. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of Fragile X syndrome in a mouse model. J Neurosci. 2014;34:9867–79. doi: 10.1523/jneurosci.1162-14.2014..
    1. Dziembowska M, Pretto DI, Janusz A, Kaczmarek L, Leigh MJ, Gabriel N, et al. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am J Med Genet Part A. 2013;161:1897–903. doi: 10.1002/ajmg.a.36023..
    1. Rotschafer SE, Trujillo MS, Dansie LE, Ethell IM, Razak KA. Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome. Brain Res. 2012;1439:7–14. doi: 10.1016/j.brainres.2011.12.041..
    1. Toledo MA, Wen TH, Binder DK, Ethell IM, Razak KA. Reversal of ultrasonic vocalization deficits in a mouse model of Fragile X Syndrome with minocycline treatment or genetic reduction of MMP-9. Behavioural Brain Res. 2019;372:112068. doi: 10.1016/j.bbr.2019.112068..
    1. Yau SY, Chiu C, Vetrici M, Christie BR. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice. Behavioural brain Res. 2016;312:77–83. doi: 10.1016/j.bbr.2016.06.015..
    1. Yau SY, Bettio L, Vetrici M, Truesdell A, Chiu C, Chiu J, et al. Chronic minocycline treatment improves hippocampal neuronal structure, NMDA receptor function, and memory processing in Fmr1 knockout mice. Neurobiol Dis. 2018;113:11–22. doi: 10.1016/j.nbd.2018.01.014..
    1. Dansie LE, Phommahaxay K, Okusanya AG, Uwadia J, Huang M, Rotschafer SE, et al. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience. 2013;246:186–98. doi: 10.1016/j.neuroscience.2013.04.058..
    1. Lovelace JW, Rais M, Palacios AR, Shuai XS, Bishay S, Popa O, et al. Deletion of Fmr1 from forebrain excitatory neurons triggers abnormal cellular, EEG, and behavioral phenotypes in the auditory cortex of a mouse model of Fragile X syndrome. Cereb Cortex. 2020;30:969–88. doi: 10.1093/cercor/bhz141..
    1. Utari A, Chonchaiya W, Rivera SM, Schneider A, Hagerman RJ, Faradz SM, et al. Side effects of minocycline treatment in patients with Fragile X syndrome and exploration of outcome measures. Am J Intellect Dev Disabil. 2010;115:433–43. doi: 10.1352/1944-7558-115.5.433..
    1. Paribello C, Tao L, Folino A, Berry-Kravis E, Tranfaglia M, Ethell IM, et al. Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol. 2010;10:91. doi: 10.1186/1471-2377-10-91..
    1. Cecchetti G, Agosta F, Basaia S, Cividini C, Cursi M, Santangelo R, et al. Resting-state electroencephalographic biomarkers of Alzheimer’s disease. NeuroImage: Clin. 2021;31:102711. doi: 10.1016/j.nicl.2021.102711..
    1. Yasin S, Hussain SA, Aslan S, Raza I, Muzammel M, Othmani A. EEG based major depressive disorder and Bipolar disorder detection using neural networks: a review. Comput Methods Prog Biomed. 2021;17:106007. doi: 10.1016/j.cmpb.2021.106007.
    1. De Bock, R, Mackintosh, AJ, Maier, F, Borgwardt, S, Riecher-Rössler, A, & Andreou, C, et al. EEG microstates as biomarker for psychosis in ultra-high-risk patients. Transl Psychiatry. 2020;10, 10.1038/s41398-020-00963-7 (2020).
    1. Häger LA, Johnels JÅ, Kropotov JD, Weidle B, Hollup S, Zehentbauer PG, et al. Biomarker support for ADHD diagnosis based on event related potentials and scores from an attention test. Psychiatry Res. 2021;300:113879. doi: 10.1016/j.psychres.2021.113879..
    1. Nicotera AG, Hagerman RJ, Catania MV, Buono S, Di Nuovo S, Liprino EM, et al. EEG Abnormalities as a neurophysiological biomarker of severity in autism spectrum disorder: a pilot cohort study. J Autism Dev Disord. 2019;49:2337–47. doi: 10.1007/s10803-019-03908-2..
    1. Sysoeva OV, Molholm S, Djukic A, Frey H-P & Foxe JJ. Atypical processing of tones and phonemes in Rett syndrome as biomarkers of disease progression. Trans Psychiatry 2020;10: 10.1038/s41398-020-00877-4 (2020).
    1. Kang E, Keifer CM, Levy EJ, Foss-Feig JH, McPartland JC, Lerner MD. Atypicality of the N170 event-related potential in autism spectrum disorder: a meta-analysis. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2018;3:657–66. doi: 10.1016/j.bpsc.2017.11.003..
    1. Loth E, Charman T, Mason L, Tillmann J, Jones EJ, Wooldridge C, et al. The EU-AIMS longitudinal european autism project (LEAP): design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders. Mol Autism. 2017;8:1–19. doi: 10.1186/s13229-017-0146-8..
    1. McPartland JC, Bernier RA, Jeste SS, Dawson G, Nelson CA, Chawarska K, et al. The autism biomarkers consortium for clinical trials (ABC-CT): scientific context, study design, and progress toward biomarker qualification. Front Integr Neurosci. 2020;14:16. doi: 10.3389/fnint.2020.00016..
    1. Ewen SP. Conceptual, regulatory and strategic imperatives in the early days of EEG-based biomarker validation for neurodevelopmental disabilities. Front Integr Neurosci. 2019;13:45. doi: 10.3389/fnint.2019.00045/full..
    1. Wong H, Hooper AWM, Niibori Y, Lee SJ, Hategan LA, Zhang L, et al. Sexually dimorphic patterns in electroencephalography power spectrum and autism-related behaviours in a rat model of fragile X syndrome. Neurobiol Dis. 2020;146:105118. doi: 10.1016/j.nbd.2020.105118.
    1. Razak KA, Dominick KC & Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord. 2020;12: 10.1186/s11689-020-09310-9.
    1. Pang EW, Taylor MJ. Tracking the development of the N1 from age 3 to adulthood: an examination of speech and non-speech stimuli. Clin Neurophysiol. 2000;111:388–97. doi: 10.1016/s1388-2457(99)00259-x..
    1. Wen TH, Lovelace JW, Ethell IM, Binder DK, Razak KA. Developmental Changes in EEG Phenotypes in a Mouse Model of Fragile X Syndrome. Neuroscience. 2019;398:126–43. doi: 10.1016/j.neuroscience.2018.11.047..
    1. Lovelace, J. W., Ethell, I. M., Binder, D. K., & Razak, K. A. Minocycline treatment reverses sound evoked EEG abnormalities in a mouse model of Fragile X Syndrome. Frontiers in neuroscience, 2020b 14, 771. 10.3389/fnins.2020.00771.

Source: PubMed

Подписаться