Inflammatory interactions between degenerated intervertebral discs and microglia: Implication of sphingosine-1-phosphate signaling

Stefania E Navone, Rolando Campanella, Laura Guarnaccia, Jean A Ouellet, Marco Locatelli, Chiara Cordiglieri, Roberta Gualtierotti, Chiara Gaudino, Giuseppe Ciniglio Appiani, Sabino Luzzi, Stefano Borsa, Paolo Rampini, Mauro Pluderi, Lisbet Haglund, Laura Riboni, Mauro Alini, Giovanni Marfia, Stefania E Navone, Rolando Campanella, Laura Guarnaccia, Jean A Ouellet, Marco Locatelli, Chiara Cordiglieri, Roberta Gualtierotti, Chiara Gaudino, Giuseppe Ciniglio Appiani, Sabino Luzzi, Stefano Borsa, Paolo Rampini, Mauro Pluderi, Lisbet Haglund, Laura Riboni, Mauro Alini, Giovanni Marfia

Abstract

The etiology of intervertebral disc degeneration is largely unknown, but local neuroinflammation may exert a crucial role through activation of cells as microglia and pro-inflammatory cytokines production. We aimed to compare the effect of degenerated and normal intervertebral disc microenvironment on microglial cells and the potential role of sphingosine-1-phosphate, a pro-inflammatory sphingolipid, in their crosstalk. Human degenerated intervertebral discs (Pfirrmann grade IV) were obtained at surgery for spondylolisthesis. Normal intervertebral discs were collected from cadaveric normal lumbar spines. Normal and degenerated-intervertebral discs were kept in culture to obtain media conditioning. Then, microglial cells were cocultured with conditioned media and viability, proliferation, migration, chemotaxis, and inflammatory gene expression were evaluated. The results demonstrate that conditioned media from degenerated intervertebral discs activate microglial cells, increasing chemotaxis, migration, and pro-inflammatory mediators release to a great extent than normal discs. In addition, we show that the administration of sphingosine-1-phosphate to normal intervertebral disc/microglia coculture mimicked degenerative effects. Interestingly, sphingosine-1-phosphate content in conditioned media from degenerated discs was significantly higher than that from normal ones. In addition, FTY720, a functional antagonist of sphingosine-1-phosphate, potently inhibited the effect of degenerated intervertebral discs on microglial inflammatory factor transcription and migration. Our data report, for the first time, that sphingosine-1-phosphate is involved as signal in the microenvironment of human degenerated intervertebral discs. Sphingosine-1-phosphate signaling modulation by FTY720 may induce beneficial effects in counteracting microglial activation during intervertebral disc degeneration.

Keywords: FTY720; inflammation; intervertebral disc degeneration; microglia; sphingosine-1-phosphate.

© 2020 Orthopaedic Research Society. Published by Wiley Periodicals LLC.

References

REFERENCES

    1. Vos T , Barber RM , Bell B , et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:743-800.
    1. Chepurin D , Chamoli U , Sheldrick K , et al. Bony stress in the lumbar spine is associated with intervertebral disc degeneration and low back pain: a retrospective case-control MRI study of patients under 25 years of age. Eur Spine J. 2019;28:2470-2477.
    1. Baliga S , Treon K , Craig NJ . Low back pain: current surgical approaches. Asian Spine J. 2105;9:645-657.
    1. Onda A , Murata Y , Rydevik B , Larsson K , Kikuchi S , Olmarker K. Immunoreactivity of brain derived neurotrophic factor in rat dorsal root ganglion and spinal cord dorsal horn following exposure to herniated nucleus pulposus. Neurosci Lett. 2003;352:49-52.
    1. Shamji MF , Allen KD , So S , et al. Gait abnormalities and inflammatory cytokines in an autologous nucleus pulposus model of radiculopathy. Spine. 2009;34:648-654.
    1. Shamji MF , Setton LA , Jarvis W , et al. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum. 2010;62:1974-1982.
    1. Burke JG , Watson RW , McCormack D , Dowling FE , Walsh MG , Fitzpatrick JM . Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J Bone Joint Surg Br. 2002;84:196-201.
    1. Navone SE , Marfia G , Giannoni A , et al. Inflammatory mediators and signalling pathways controlling intervertebral disc degeneration. Histol Histopathol. 2017;32:523-542.
    1. Murai K , Sakai D , Nakamura Y , et al. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation. Eur Cell Mater. 2010;19:13-21.
    1. Kokubo Y , Uchida K , Kobayashi S , et al. Herniated and spondylotic intervertebral discs of the human cervical spine: histological and immunohistological findings in 500 en bloc surgical samples. J Neurosurg Spine. 2008;3:285-295.
    1. Cho HK , Ahn SH , Kim SY , Choi MJ , Hwang SJ , Cho YW . Changes in the expressions of Iba1 and calcitonin gene-related peptide in adjacent lumbar spinal segments after lumbar disc herniation in a rat model. J Korean Med Sci. 2015;30:1902-1910.
    1. Fenzi F , Benedetti MD , Moretto G , Rizzuto N. Glial cell and macrophage reactions in rat spinal ganglion after peripheral nerve lesions: an immunocytochemical and morphometric study. Arch Ital Biol. 2001;139:357-365.
    1. Cho HK , Kim SY , Choi MJ , Baek SO , Kwak SG , Ahn SH . The effect of GCSB-5 a new herbal medicine on changes in pain behavior and neuroglial activation in a rat model of lumbar disc herniation. J Korean Neurosurg Soc. 2016;59:98-105.
    1. Navone SE , Peroglio M , Guarnaccia L , et al. Mechanical loading of intervertebral disc modulates microglia proliferation, activation, and chemotaxis. Osteoarthritis Cartilage. 2018;26(7):978-987.
    1. Gualtierotti R , Guarnaccia L , Beretta M , et al. Modulation of neuroinflammation in the central nervous system: role of chemokines and sphingolipids. Adv Ther. 2017;34:396-420.
    1. Riboni L , Viani P , Bassi R , Prinetti A , Tettamanti G. The role of sphingolipids in the process of signal transduction. Prog Lipid Res. 1997;36:153-195.
    1. Marfia G , Navone SE , Hadi LA , et al. The adipose mesenchymal stem cell secretome inhibits inflammatory responses of microglia: evidence for an involvement of sphingosine-1-phosphate signalling. Stem Cells Dev. 2016;25:1095-1107.
    1. Pfirrmann CW , Metzdorf A , Zanetti M , Hodler J , Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873-1878.
    1. Gawri R , Rosenzweig DH , Krock E , et al. High mechanical strain of primary intervertebral disc cells promotes secretion of inflammatory factors associated with disc degeneration and pain. Arthritis Res Ther. 2014;16(1):R21.
    1. Marfia G , Campanella R , Navone SE , et al. Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration. Arthritis Res Ther. 2014;16:457.
    1. Altun I. Cytokine profile in degenerated painful intervertebral disc: variability with respect to duration of symptoms and type of disease. Spine J. 2016;16:857-861.
    1. Ito T , Ohtori S , Inoue G , et al. Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis. Spine. 2007;32:159-167.
    1. Murata Y , Onda A , Rydevik B , Takahashi K , Olmarker K. Selective inhibition of tumor necrosis factor-alpha prevents nucleus pulposus-induced histologic changes in the dorsal root ganglion. Spine. 2004;29:2477-2484.
    1. Edgar MA . The nerve supply of the lumbar intervertebral disc. J Bone Joint Surg Br. 2007;89:1135-1139.
    1. Risbud MV , Shapiro IM . Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol. 2014;10:44-56.
    1. García-Cosamalón J , del Valle ME , Calavia MG , et al. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat. 2010;217:1-15.
    1. Rothman SM , Guarino BB , Winkelstein BA . Spinal microglial proliferation is evident in a rat model of painful disc herniation both in the presence of behavioural hypersensitivity and following minocycline treatment sufficient to attenuate allodynia. J Neurosci Res. 2009;87:2709-2717.
    1. Miyagi M , Ishikawa T , Orita S , et al. Disk injury in rats produces persistent increases in pain-related neuropeptides in dorsal root ganglia and spinal cord glia but only transient increases in inflammatory mediators: pathomechanism of chronic diskogenic low back pain. Spine. 2011;36:2260-2266.
    1. Nerlich AG , Weiler C , Zipperer J , Narozny M , Boos N. Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs. Spine. 2002;27:2484-2490.
    1. Kawaguchi S , Yamashita T , Yokogushi K , Murakami T , Ohwada O , Sato N. Immunophenotypic analysis of the inflammatory infiltrates in herniated intervertebral discs. 2001. Spine. 2001;26:1209-1214.
    1. Jones P , Gardner L , Menage J , Williams GT , Roberts S. Intervertebral disc cells as competent phagocytes in vitro: implications for cell death in disc degeneration. Arthritis Res Ther. 2008;10:R86.
    1. Konsman JP , Drukarch B , Van Dam AM . (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci. 2007;112:1-25.
    1. Luzzi S , Crovace AM , Lacitignola L , et al. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats. Surg Neurol Int. 2018;9:19.
    1. Tsuda M , Inoue K , Salter MW . Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci. 2005;28:101-107.
    1. Morganti-Kossmann MC , Rancan M , Stahel PF , Kossmann T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care. 2002;2:101-105.
    1. Hanisch UK . Microglia as a source and target of cytokines. GLIA. 2002;40:140-155.
    1. Krock E , Rosenzweig DH , Chabot-Doré AJ , et al. Painful, degenerating intervertebral discs up-regulate neurite sprouting and CGRP through nociceptive factors. J Cell Mol Med. 2014;18(6):1213-1225.
    1. Pattappa G , Peroglio M , Sakai D , et al. CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture. Eur Cell Mater. 2014;27:124-136.
    1. Kepler CK , Markova DZ , Dibra F , et al. Expression and relationship of proinflammatory chemokine RANTES/CCL5 and cytokine IL-1β in painful human intervertebral discs. Spine. 2013;38:873-880.
    1. Pratsinis H , Constantinou V , Pavlakis K , Sapkas G , Kletsas D. Exogenous and autocrine growth factors stimulate human intervertebral disc cell proliferation via the ERK and Akt pathways. J Orthop Res. 2012;30:958-964.
    1. Kawaguchi S , Yamashita T , Katahira G , Yokozawa H , Torigoe T , Sato N. Chemokine profile of herniated intervertebral discs infiltrated with monocytes and macrophages. Spine. 2002;27:1511-1516.
    1. Pyne NJ , McNaughton M , Boomkamp S , et al. Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation. Adv Biol Regul. 2015;60:151-159.
    1. Nayak D , Huo Y , Kwang WX , et al. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience. 2010;166:132-144.
    1. Snider AJ , Orr Gandy KA , Obeid LM . Sphingosine kinases: role in regulation of bioactive sphingolipid mediators in inflammation. Biochimie. 2010;92:707-715.
    1. Zhang YH , Fehrenbacher JC , Vasko MR , Nicol GD . Sphingosine-1-phosphate via activation of a G-protein-coupled receptor(s) enhances the excitability of rat sensory neurons. J Neurophysiol. 2006;3:1042-1052.
    1. Doyle T , Chen Z , Muscoli C , Obeid LM , Salvemini D. Intraplantar-injected ceramide in rats induces hyperalgesia through an NF-kB- and p38 kinase-dependent cyclooxygenase 2/prostaglandin E2 pathway. FASEB J. 2011;25:2782-2791.
    1. Park SJ , Im DS . Sphingosine 1-phosphate receptor modulators and drug discovery. Biomol Ther. 2017;25(1):80-90.
    1. Noda H , Takeuchi H , Mizuno T , Suzumura A. Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol. 2013;256:13-18.
    1. Wei Y , Yemisci M , Kim HH , et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol. 2011;69:119-129.
    1. Lee S. Comparison of growth factor and cytokine expression in patients with degenerated disc disease and herniated nucleus pulposus. Clin Biochem. 2009;42(15):1504-1511.
    1. Norimatsu Y , Ohmori T , Kimura A , et al. FTY720 improves functional recovery after spinal cord injury by primarily nonimmunomodulatory mechanisms. Am J Pathol. 2012;180:1625-1635.
    1. Stansley B , Post J , Hensley K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease. J Neuroinflam. 2012;9:115.
    1. Timmerman R , Burm SM , Bajramovic JJ . An overview of in vitro methods to study microglia. Front Cell Neurosci. 2018;12:242.
    1. Gosselin D , Skola D , Coufal NG , et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017:356.
    1. Geirsdottir L , David E , Keren-Shaul H , et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell. 2019;179:1609-1622.

Source: PubMed

Подписаться