Cardiorespiratory Adaptation to Short-Term Exposure to Altitude vs. Normobaric Hypoxia in Patients with Pulmonary Hypertension

Simon R Schneider, Mona Lichtblau, Michael Furian, Laura C Mayer, Charlotte Berlier, Julian Müller, Stéphanie Saxer, Esther I Schwarz, Konrad E Bloch, Silvia Ulrich, Simon R Schneider, Mona Lichtblau, Michael Furian, Laura C Mayer, Charlotte Berlier, Julian Müller, Stéphanie Saxer, Esther I Schwarz, Konrad E Bloch, Silvia Ulrich

Abstract

Prediction of adverse health effects at altitude or during air travel is relevant, particularly in pre-existing cardiopulmonary disease such as pulmonary arterial or chronic thromboembolic pulmonary hypertension (PAH/CTEPH, PH). A total of 21 stable PH-patients (64 ± 15 y, 10 female, 12/9 PAH/CTEPH) were examined by pulse oximetry, arterial blood gas analysis and echocardiography during exposure to normobaric hypoxia (NH) (FiO2 15% ≈ 2500 m simulated altitude, data partly published) at low altitude and, on a separate day, at hypobaric hypoxia (HH, 2500 m) within 20−30 min after arrival. We compared changes in blood oxygenation and estimated pulmonary artery pressure in lowlanders with PH during high altitude simulation testing (HAST, NH) with changes in response to HH. During NH, 4/21 desaturated to SpO2 < 85% corresponding to a positive HAST according to BTS-recommendations and 12 qualified for oxygen at altitude according to low SpO2 < 92% at baseline. At HH, 3/21 received oxygen due to safety criteria (SpO2 < 80% for >30 min), of which two were HAST-negative. During HH vs. NH, patients had a (mean ± SE) significantly lower PaCO2 4.4 ± 0.1 vs. 4.9 ± 0.1 kPa, mean difference (95% CI) −0.5 kPa (−0.7 to −0.3), PaO2 6.7 ± 0.2 vs. 8.1 ± 0.2 kPa, −1.3 kPa (−1.9 to −0.8) and higher tricuspid regurgitation pressure gradient 55 ± 4 vs. 45 ± 4 mmHg, 10 mmHg (3 to 17), all p < 0.05. No serious adverse events occurred. In patients with PH, short-term exposure to altitude of 2500 m induced more pronounced hypoxemia, hypocapnia and pulmonary hemodynamic changes compared to NH during HAST despite similar exposure times and PiO2. Therefore, the use of HAST to predict physiological changes at altitude remains questionable. (ClinicalTrials.gov: NCT03592927 and NCT03637153).

Keywords: chronic thromboembolic pulmonary hypertension; high altitude; hypobaric hypoxia; normobaric hypoxia; pulmonary hypertension.

Conflict of interest statement

S.R. Schneider has nothing to disclose. M. Lichtblau has nothing to disclose. M. Furian has nothing to disclose. L. Mayer has nothing to disclose. C. Berlier has nothing to disclose. J. Müller has nothing to disclose. S. Saxer has nothing to disclose. E.I. Schwarz has nothing to disclose. K.E. Bloch has nothing to disclose. S. Ulrich reports grants from Johnson and Johnson SA, Switzerland, during the conduct of the study; and grants from the Swiss National Science Foundation and Zurich Lung, grants and personal fees from Orpha Swiss, and personal fees from Actelion SA and MSD SA, outside the submitted work.

Figures

Figure 1
Figure 1
Flow chart: HAST = High altitude simulation test.
Figure 2
Figure 2
SpO2 (triangles, blue) and PaO2 (circles, green) in normobaric normoxia (470 m), normobaric hypoxia (470 m) and at high altitude (2500 m). HAST = High altitude simulation test. Measurements are summarized as means and 95% Confidence Intervals. Data are computed from a mixed-effect regression model with fixed effects variables as time, age, gender and New York Heart Association class.
Figure 3
Figure 3
Physiological outcomes after 20–30 min under normobaric (FiO2: 15%) vs. hypobaric hypoxia (2500 m). Triangles and circles indicate mixed-effect model derived means and 95% confidence intervals (CI) of outcomes during normobaric hypoxia (FiO2: 15%) and hypobaric hypoxia (2500 m) after 20–30 min of exposure. Fixed effects variables are Time, Age, Gender and New York Heart Association class and random effect is the subject ID. Cubes indicate the mixed-effect model derived mean-differences with associated 95% CI.
Figure 4
Figure 4
Predictions for oxygen at altitude. NYHA = New York Heart Association class, HAST = High altitude simulation test, numbers in bar represent absolute numbers. PaO2 (n = 20).
Figure 5
Figure 5
Receiver Operator Characteristic Curve for altitude related adverse health effects at 2500 m. HAST = High altitude simulation test including an exposure to normobaric hypoxia FiO2: 15%, NYHA = New York Heart Association class, ROC = Receiver Characteristic Operator Curve, AUC = Area under Curve.

References

    1. Tremblay J.C., Ainslie P.N. Global and country-level estimates of human population at high altitude. Proc. Natl. Acad. Sci. USA. 2021;118:e2102463118. doi: 10.1073/pnas.2102463118.
    1. Chatre B., Lanzinger G., Macaluso M., Mayrhofer W., Morandini M., Onida M., Polajnar B. The Alps: People and Pressures in the Mountains, the Facts at a Glance: Vademecum. Permanent Sekretariat of the Alpine Convention; Innsbruck, Austria: 2010.
    1. Furian M., Buergin A., Scheiwiller P.M., Mayer L., Schneider S., Mademilov M., Emilov B., Lichtblau M., Muralt L., Sheraliev U., et al. Prevention of altitude-related illness in patients with COPD by acetazolamide. RCT. Eur. Respir. J. 2019;54:PA3938. doi: 10.1183/13993003.congress-2019.PA3938%JEuropeanRespiratoryJournal.
    1. Furian M., Lichtblau M., Aeschbacher S.S., Estebesova B., Emilov B., Sheraliev U., Marazhapov N.H., Mademilov M., Osmonov B., Bisang M., et al. Efficacy of Dexamethasone in Preventing Acute Mountain Sickness in COPD Patients: Randomized Trial. Chest. 2018;154:788–797. doi: 10.1016/j.chest.2018.06.006.
    1. Furian M., Flueck D., Latshang T.D., Scheiwiller P.M., Segitz S.D., Mueller-Mottet S., Murer C., Steiner A., Ulrich S., Rothe T., et al. Exercise performance and symptoms in lowlanders with COPD ascending to moderate altitude: Randomized trial. Int. J. Chron. Obstruct. Pulmon. Dis. 2018;13:3529–3538. doi: 10.2147/COPD.S173039.
    1. Roach R.C., Hackett P.H., Oelz O., Bartsch P., Luks A.M., MacInnis M.J., Baillie J.K., Lake Louise A.M.S.S.C.C. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt. Med. Biol. 2018;19:4–6. doi: 10.1089/ham.2017.0164.
    1. Lichtblau M., Saxer S., Furian M., Mayer L., Bader P.R., Scheiwiller P., Mademilov M., Sheraliev U., Tanner F.C., Sooronbaev T.M., et al. Cardiac function and pulmonary hypertension in Central Asian highlanders at 3250 m. Eur. Respir. J. 2020;56:1902474. doi: 10.1183/13993003.02474-2019.
    1. Groth A., Saxer S., Bader P.R., Lichtblau M., Furian M., Schneider S.R., Schwarz E.I., Bloch K.E., Ulrich S. Acute hemodynamic changes by breathing hypoxic and hyperoxic gas mixtures in pulmonary arterial and chronic thromboembolic pulmonary hypertension. Int. J. Cardiol. 2018;270:262–267. doi: 10.1016/j.ijcard.2018.05.127.
    1. Schneider S.R., Mayer L.C., Lichtblau M., Berlier C., Schwarz E.I., Saxer S., Furian M., Bloch K.E., Ulrich S. Effect of Normobaric Hypoxia on Exercise Performance in Pulmonary Hypertension: Randomized Trial. Chest. 2021;159:757–771. doi: 10.1016/j.chest.2020.09.004.
    1. Schneider S.R., Mayer L.C., Lichtblau M., Berlier C., Schwarz E.I., Saxer S., Tan L., Furian M., Bloch K.E., Ulrich S. Effect of a daytrip to altitude (2500 m) on exercise performance in pulmonary hypertension–randomized cross-over trial. ERJ Open Res. 2021;7:00314–02021. doi: 10.1183/23120541.00314-2021.
    1. Edvardsen A., Ryg M., Akero A., Christensen C.C., Skjonsberg O.H. COPD and air travel: Does hypoxia-altitude simulation testing predict in-flight respiratory symptoms? Eur. Respir. J. 2013;42:1216–1223. doi: 10.1183/09031936.00157112.
    1. Edvardsen A., Akero A., Christensen C.C., Ryg M., Skjonsberg O.H. Air travel and chronic obstructive pulmonary disease: A new algorithm for pre-flight evaluation. Thorax. 2012;67:964–969. doi: 10.1136/thoraxjnl-2012-201855.
    1. Coker R.K., Armstrong A., Church A.C., Holmes S., Naylor J., Pike K., Saunders P., Spurling K.J., Vaughn P. BTS Clinical Statement on air travel for passengers with respiratory disease. Thorax. 2022;77:329–350. doi: 10.1136/thoraxjnl-2021-218110.
    1. Akero A., Edvardsen A., Christensen C.C., Owe J.O., Ryg M., Skjonsberg O.H. COPD and air travel: Oxygen equipment and preflight titration of supplemental oxygen. Chest. 2011;140:84–90. doi: 10.1378/chest.10-0965.
    1. Bradi A.C., Faughnan M.E., Stanbrook M.B., Deschenes-Leek E., Chapman K.R. Predicting the need for supplemental oxygen during airline flight in patients with chronic pulmonary disease: A comparison of predictive equations and altitude simulation. Can. Respir. J. 2009;16:119–124. doi: 10.1155/2009/371901.
    1. Howard L.S. Last call for the flight simulation test? Eur. Respir. J. 2013;42:1175–1177. doi: 10.1183/09031936.00037813.
    1. Naeije R. Preflight medical screening of patients. Eur. Respir. J. 2000;16:197–199. doi: 10.1034/j.1399-3003.2000.16b02.x.
    1. Galie N., Humbert M., Vachiery J.L., Gibbs S., Lang I., Torbicki A., Simonneau G., Peacock A., Vonk Noordegraaf A., Beghetti M., et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT) Eur. Heart J. 2016;37:67–119. doi: 10.1093/eurheartj/ehv317.
    1. Mitchell C., Rahko P.S., Blauwet L.A., Canaday B., Finstuen J.A., Foster M.C., Horton K., Ogunyankin K.O., Palma R.A., Velazquez E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019;32:1–64. doi: 10.1016/j.echo.2018.06.004.
    1. Chemla D., Humbert M., Sitbon O., Montani D., Herve P. Systolic and mean pulmonary artery pressures: Are they interchangeable in patients with pulmonary hypertension? Chest. 2015;147:943–950. doi: 10.1378/chest.14-1755.
    1. Doutreleau S., Canuet M., Enache I., Di Marco P., Lonsdorfer E., Oswald-Mammoser M., Charloux A. Right Heart Hemodynamics in Pulmonary Hypertension—An Echocardiography and Catheterization Study. Circ. J. 2016;80:2019–2025. doi: 10.1253/circj.CJ-16-0206.
    1. Huez S., Faoro V., Guenard H., Martinot J.B., Naeije R. Echocardiographic and tissue Doppler imaging of cardiac adaptation to high altitude in native highlanders versus acclimatized lowlanders. Am. J. Cardiol. 2009;103:1605–1609. doi: 10.1016/j.amjcard.2009.02.006.
    1. Tello K., Wan J., Dalmer A., Vanderpool R., Ghofrani H.A., Naeije R., Roller F., Mohajerani E., Seeger W., Herberg U., et al. Validation of the Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ventricular-Arterial Coupling in Severe Pulmonary Hypertension. Circ. Cardiovasc. Imaging. 2019;12:e009047. doi: 10.1161/CIRCIMAGING.119.009047.
    1. Singh V., Khatana S., Gupta P. Blood gas analysis for bedside diagnosis. Natl. J. Maxillofac. Surg. 2013;4:136–141. doi: 10.4103/0975-5950.127641.
    1. Hext F., Stubbings A., Bird B., Patey S., Wright A., the Birmingham Medical Research Expeditionary Society Visual analogue scores in assessment of acute mountain sickness. High Alt. Med. Biol. 2011;12:329–333. doi: 10.1089/ham.2010.1055.
    1. British Thoracic Society Standards of Care Committee Managing passengers with respiratory disease planning air travel: British Thoracic Society recommendations. Thorax. 2002;57:289–304. doi: 10.1136/thorax.57.4.289.
    1. Josephs L.K., Coker R.K., Thomas M., Group B.T.S.A.T.W., British Thoracic S. Managing patients with stable respiratory disease planning air travel: A primary care summary of the British Thoracic Society recommendations. Prim. Care Respir. J. 2013;22:234–238. doi: 10.4104/pcrj.2013.00046.
    1. Ahmedzai S., Balfour-Lynn I.M., Bewick T., Buchdahl R., Coker R.K., Cummin A.R., Gradwell D.P., Howard L., Innes J.A., Johnson A.O., et al. Managing passengers with stable respiratory disease planning air travel: British Thoracic Society recommendations. Thorax. 2011;66((Suppl. 1)):i1–i30. doi: 10.1136/thoraxjnl-2011-200295.
    1. Bartsch P., Bailey D.M., Berger M.M., Knauth M., Baumgartner R.W. Acute mountain sickness: Controversies and advances. High Alt. Med. Biol. 2004;5:110–124. doi: 10.1089/1527029041352108.
    1. Brack T. Into Thin Air: A Step Forward to Counsel Patients with Pulmonary Hypertension Travelling to High Altitude. Chest. 2021;159:484–485. doi: 10.1016/j.chest.2020.10.002.
    1. Matthys H. Fit for high altitude: Are hypoxic challenge tests useful? Multidiscip. Respir. Med. 2011;6:38–46. doi: 10.1186/2049-6958-6-1-38.
    1. Conkin J., Wessel J.H., 3rd Critique of the equivalent air altitude model. Aviat. Space Environ. Med. 2008;79:975–982. doi: 10.3357/ASEM.2331.2008.
    1. Kellogg R.H. “La Pression barométrique”: Paul Bert’s hypoxia theory and its critics. Respir. Physiol. 1978;34:1–28. doi: 10.1016/0034-5687(78)90046-4.
    1. Conkin J. Equivalent Air Altitude and the Alveolar Gas Equation. Aerosp. Med. Hum. Perform. 2016;87:61–64. doi: 10.3357/AMHP.4421.2016.
    1. Dine C.J., Kreider M.E. Hypoxia altitude simulation test. Chest. 2008;133:1002–1005. doi: 10.1378/chest.07-1354.
    1. Johnson A.O. Chronic obstructive pulmonary disease* 11: Fitness to fly with COPD. Thorax. 2003;58:729–732. doi: 10.1136/thorax.58.8.729.
    1. Coker R.K., Shiner R.J., Partridge M.R. Is air travel safe for those with lung disease? Eur. Respir. J. 2007;30:1057–1063. doi: 10.1183/09031936.00024707.
    1. Loeppky J.A., Icenogle M., Scotto P., Robergs R., Hinghofer-Szalkay H., Roach R.C. Ventilation during simulated altitude, normobaric hypoxia and normoxic hypobaria. Respir. Physiol. 1997;107:231–239. doi: 10.1016/S0034-5687(97)02523-1.
    1. Savourey G., Launay J.C., Besnard Y., Guinet A., Travers S. Normo- and hypobaric hypoxia: Are there any physiological differences? Eur. J. Appl. Physiol. 2003;89:122–126. doi: 10.1007/s00421-002-0789-8.
    1. Dunham-Snary K.J., Wu D., Sykes E.A., Thakrar A., Parlow L.R.G., Mewburn J.D., Parlow J.L., Archer S.L. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest. 2017;151:181–192. doi: 10.1016/j.chest.2016.09.001.

Source: PubMed

Подписаться