Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans

Gissette Reyes-Soffer, Marianna Pavlyha, Colleen Ngai, Tiffany Thomas, Stephen Holleran, Rajasekhar Ramakrishnan, Wahida Karmally, Renu Nandakumar, Nelson Fontanez, Joseph Obunike, Santica M Marcovina, Alice H Lichtenstein, Nirupa R Matthan, James Matta, Magali Maroccia, Frederic Becue, Franck Poitiers, Brian Swanson, Lisa Cowan, William J Sasiela, Howard K Surks, Henry N Ginsberg, Gissette Reyes-Soffer, Marianna Pavlyha, Colleen Ngai, Tiffany Thomas, Stephen Holleran, Rajasekhar Ramakrishnan, Wahida Karmally, Renu Nandakumar, Nelson Fontanez, Joseph Obunike, Santica M Marcovina, Alice H Lichtenstein, Nirupa R Matthan, James Matta, Magali Maroccia, Frederic Becue, Franck Poitiers, Brian Swanson, Lisa Cowan, William J Sasiela, Howard K Surks, Henry N Ginsberg

Abstract

Background: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date.

Methods: Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured.

Results: Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations.

Conclusions: Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a).

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971.

Keywords: LDL receptor; Lp(a); PCSK9; apoliprotein; lipoproteins; low-density lipoprotein.

Conflict of interest statement

Disclosures Gissette Reyes-Soffer: Research Support (Sanofi; Merck Inc.) Consultant (Merck) Marianna Pavlyha, Colleen Ngai, Tiffany Thomas, Stephen Holleran, Rajasekhar Ramakrishnan, Wahida Karmally, Renu Nandakumar, Nelson Fontanez, Joseph Obunike, Santica M. Marcovina, Alice Lichtenstein, Nirupa Rachel Matthan: None James Matta, Frederic Becue, Franck Poitiers, Brian Swanson, Lisa Cowan, Howard K. Surks: Employment (Sanofi) Magali Maroccia: Employment (contractor to Sanofi) William J. Sasiela: Employment (Regeneron Pharmaceuticals, Inc.) Henry N. Ginsberg: Research Support (Merck; Sanofi and Regeneron; Amgen), Consultant/Advisory Board (Amgen; AstraZeneca; Bristol Myers Squibb; GlaxoSmithKline; Ionis; Janssen; Kowa; Merck; Novartis; Sanofi; Regeneron; Pfizer; Resverlogix).

© 2016 The Authors.

Figures

Figure 1.
Figure 1.
Effects of alirocumab on VLDL-, IDL-, and LDL–apoB fractional clearance rates (A) and production rates (B). FCRs of VLDL, IDL, and LDL-apoB (mean±SE) were determined by stable isotopic enrichment of apoB in each lipoproteins. PRs (mean±SE) were calculated using the FCRs and plasma pool size of apoB in each lipoprotein. Alirocumab treatment significantly increased the FCRs of IDL and LDL apoB and reduced the PR of LDL apoB compared with placebo. No significant effects of alirocumab on VLDL apoB metabolism were found. apoB indicates apolipoprotein B; FCR, fractional clearance rate; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; ns, not significant; PR, production rate; SE, standard error; and VLDL, very low-density lipoprotein.
Figure 2.
Figure 2.
Effect of alirocumab on VLDL-TG fractional clearance rates (A) and production rates (B). FCR of VLDL-TG (mean±SE) was determined by stable isotopic enrichment of glycerol in each sample of isolated VLDL over 48 hours. VLDL-TG PR (mean±SE) was calculated using the FCR and the plasma pool size of TG in VLDL. Alirocumab treatment did not affect either the FCR or the PR of VLDL-TG compared with placebo. FCR indicates fractional clearance rate; PR, production rate; TG, triglycerides; and VLDL, very low-density lipoprotein.
Figure 3.
Figure 3.
Correlation between baseline serum-free PCSK9 levels and changes in (A) LDL-C and (B) LDL-apoB levels. Baseline levels of serum-free PCSK9 were examined for correlation with alirocumab-induced changes in LDL-C and LDL-apoB in all 18 subjects. Changes in both LDL-C and LDL-apoB were related to PCSK9 levels at baseline. apoB indicates apolipoprotein B; LDL, low-density lipoprotein; LDL-C, low-density lipoprotein cholesterol; and PCSK9, proprotein convertase subtilisin/kexin type 9.
Figure 4.
Figure 4.
Postprandial levels of TG (A) and ApoB48 (B) after a high-fat meal. (Left) Mean concentrations over time. (Right) Incremental area-under-the-curve (IAUC). Ten participants had blood samples just before and at 1, 2, 3, 5, and 8 hours after consuming a high-fat liquid meal providing 1237 Kcal per 2 m2 body surface area from 75% fat, 10% protein, and 15% carbohydrate The data are presented as individual timepoints (mean±SE) and area under the curve above baseline (IAUC) (mean±SE) of plasma TG and apoB48 concentrations. Alirocumab had no effects on postprandial levels of TG and apoB48 compared with placebo. apoB indicates apolipoprotein B; and TG, triglycerides.
Figure 5.
Figure 5.
Role of PCSK9 in LDL metabolism and impact of PCSK9 monoclonal antibody. (A) (1) LDLR binds to LDL particle at the liver cell surface. PCSK9 can also bind to the LDLR. (2) The LDL particle-LDLR complexes with or without PCSK9 bound are internalized in the liver cell by endocytosis. (3) LDLR not bound to PCSK9 release the LDL particle, which goes to a lysosome for digestion, whereas the LDLR is recycled to the cell surface. (4) LDLR bound to PCSK9 is digested in the lysosome along with the LDL particle. (B) (1) PCSK9 mAb binds PCSK9 in the circulation, preventing it from binding the LDLR. (2) The LDL particle-LDLR complexes are internalized in the liver cell. (3) In the absence of PCSK9 binding, increased LDLR receptor recycling and more LDLR on the liver cell surface to bind result. (4) Circulating LDL particle levels are reduced. LDL indicates low-density lipoprotein; LDLR, low-density lipoprotein receptor; mAb, monoclonal antibody; and PCSK9, proprotein convertase subtilisin/kexin type 9.

References

    1. Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50(Suppl):S172–S177. doi: 10.1194/jlr.R800091-JLR200.
    1. Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–1036. doi: 10.1161/CIRCRESAHA.114.301621.
    1. Cannon CP, Cariou B, Blom D, McKenney JM, Lorenzato C, Pordy R, Chaudhari U, Colhoun HM ODYSSEY COMBO II investigators. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J. 2015;36:1186–1194. doi: 10.1093/eurheartj/ehv028.
    1. Kastelein JJ, Ginsberg HN, Langslet G, Hovingh GK, Ceska R, Dufour R, Blom D, Civeira F, Krempf M, Lorenzato C, Zhao J, Pordy R, Baccara-Dinet MT, Gipe DA, Geiger MJ, Farnier M. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36:2996–3003. doi: 10.1093/eurheartj/ehv370.
    1. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, Koren MJ, Lepor NE, Lorenzato C, Pordy R, Chaudhari U, Kastelein JJ ODYSSEY LONG TERM investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–1499. doi: 10.1056/NEJMoa1501031.
    1. Kita T, Brown MS, Bilheimer DW, Goldstein JL. Delayed clearance of very low density and intermediate density lipoproteins with enhanced conversion to low density lipoprotein in WHHL rabbits. Proc Natl Acad Sci U S A. 1982;79:5693–5697.
    1. Krul ES, Tikkanen MJ, Cole TG, Davie JM, Schonfeld G. Roles of apolipoproteins B and E in the cellular binding of very low density lipoproteins. J Clin Invest. 1985;75:361–369. doi: 10.1172/JCI111708.
    1. Mahley RW, Ji ZS. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res. 1999;40:1–16.
    1. Gaudet D, Kereiakes DJ, McKenney JM, Roth EM, Hanotin C, Gipe D, Du Y, Ferrand AC, Ginsberg HN, Stein EA. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am J Cardiol. 2014;114:711–715. doi: 10.1016/j.amjcard.2014.05.060.
    1. McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59:2344–2353. doi: 10.1016/j.jacc.2012.03.007.
    1. Kostner GM, Gavish D, Leopold B, Bolzano K, Weintraub MS, Breslow JL. HMG CoA reductase inhibitors lower LDL cholesterol without reducing Lp(a) levels. Circulation. 1989;80:1313–1319.
    1. Reyes-Soffer G, Moon B, Hernandez-Ono A, Dionizovik-Dimanovski M, Dionizovick-Dimanovski M, Jimenez J, Obunike J, Thomas T, Ngai C, Fontanez N, Donovan DS, Karmally W, Holleran S, Ramakrishnan R, Mittleman RS, Ginsberg HN. Complex effects of inhibiting hepatic apolipoprotein B100 synthesis in humans. Sci Transl Med. 2016;8:323ra12. doi: 10.1126/scitranslmed.aad2195.
    1. Marcovina SM, Albers JJ, Scanu AM, Kennedy H, Giaculli F, Berg K, Couderc R, Dati F, Rifai N, Sakurabayashi I, Tate JR, Steinmetz A. Use of a reference material proposed by the International Federation of Clinical Chemistry and Laboratory Medicine to evaluate analytical methods for the determination of plasma lipoprotein(a). Clin Chem. 2000;46:1956–1967.
    1. Marcovina SM, Hobbs HH, Albers JJ. Relation between number of apolipoprotein(a) kringle 4 repeats and mobility of isoforms in agarose gel: basis for a standardized isoform nomenclature. Clin Chem. 1996;42:436–439.
    1. Caulfield MP, Li S, Lee G, Blanche PJ, Salameh WA, Benner WH, Reitz RE, Krauss RM. Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis. Clin Chem. 2008;54:1307–1316. doi: 10.1373/clinchem.2007.100586.
    1. Matthan NR, Resteghini N, Robertson M, Ford I, Shepherd J, Packard C, Buckley BM, Jukema JW, Lichtenstein AH, Schaefer EJ PROSPER Group. Cholesterol absorption and synthesis markers in individuals with and without a CHD event during pravastatin therapy: insights from the PROSPER trial. J Lipid Res. 2010;51:202–209. doi: 10.1194/jlr.M900032-JLR200.
    1. Nagashima K, Lopez C, Donovan D, Ngai C, Fontanez N, Bensadoun A, Fruchart-Najib J, Holleran S, Cohn JS, Ramakrishnan R, Ginsberg HN. Effects of the PPARgamma agonist pioglitazone on lipoprotein metabolism in patients with type 2 diabetes mellitus. J Clin Invest. 2005;115:1323–1332. doi: 10.1172/JCI23219.
    1. Ramakrishnan R. Studying apolipoprotein turnover with stable isotope tracers: correct analysis is by modeling enrichments. J Lipid Res. 2006;47:2738–2753. doi: 10.1194/jlr.M600302-JLR200.
    1. Berglund L, Witztum JL, Galeano NF, Khouw AS, Ginsberg HN, Ramakrishnan R. Three-fold effect of lovastatin treatment on low density lipoprotein metabolism in subjects with hyperlipidemia: increase in receptor activity, decrease in apoB production, and decrease in particle affinity for the receptor: results from a novel triple-tracer approach. J Lipid Res. 1998;39:913–924.
    1. Zhou H, Castro-Perez J, Lassman ME, Thomas T, Li W, McLaughlin T, Dan X, Jumes P, Wagner JA, Gutstein DE, Hubbard BK, Rader DJ, Millar JS, Ginsberg HN, Reyes-Soffer G, Cleary M, Previs SF, Roddy TP. Measurement of apo(a) kinetics in human subjects using a microfluidic device with tandem mass spectrometry. Rapid Commun Mass Spectrom. 2013;27:1294–1302. doi: 10.1002/rcm.6572.
    1. Reyes-Soffer G, Holleran S, Karmally W, Ngai CI, Chen NT, Torres M, Ramakrishnan R, Blaner WS, Berglund L, Ginsberg HN, Tuck C. Measures of postprandial lipoproteins are not associated with coronary artery disease in patients with type 2 diabetes mellitus. J Lipid Res. 2009;50:1901–1909. doi: 10.1194/jlr.M900092-JLR200.
    1. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM, Somaratne R, Legg J, Wasserman SM, Scott R, Koren MJ, Stein EA Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) investigators. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–1509. doi: 10.1056/NEJMoa1500858.
    1. Ginsberg HN. Effects of statins on triglyceride metabolism. Am J Cardiol. 1998;81(4A):32B–35B.
    1. Ginsberg HN. Review: Efficacy and mechanisms of action of statins in the treatment of diabetic dyslipidemia. J Clin Endocrinol Metab. 2006;91:383–392. doi: 10.1210/jc.2005-2084.
    1. Brown MS, Goldstein JL. How LDL receptors influence cholesterol and atherosclerosis. Sci Am. 1984;251:58–66.
    1. Campos H, Arnold KS, Balestra ME, Innerarity TL, Krauss RM. Differences in receptor binding of LDL subfractions. Arterioscler Thromb Vasc Biol. 1996;16:794–801.
    1. Havel RJ. Functional activities of hepatic lipoprotein receptors. Annu Rev Physiol. 1986;48:119–134. doi: 10.1146/annurev.ph.48.030186.001003.
    1. Packard CJ, Munro A, Lorimer AR, Gotto AM, Shepherd J. Metabolism of apolipoprotein B in large triglyceride-rich very low density lipoproteins of normal and hypertriglyceridemic subjects. J Clin Invest. 1984;74:2178–2192. doi: 10.1172/JCI111644.
    1. Sun H, Samarghandi A, Zhang N, Yao Z, Xiong M, Teng BB. Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low-density lipoprotein receptor. Arterioscler Thromb Vasc Biol. 2012;32:1585–1595. doi: 10.1161/ATVBAHA.112.250043.
    1. Rashid S, Tavori H, Brown PE, Linton MF, He J, Giunzioni I, Fazio S. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation. 2014;130:431–441. doi: 10.1161/CIRCULATIONAHA.113.006720.
    1. Le May C, Kourimate S, Langhi C, Chétiveaux M, Jarry A, Comera C, Collet X, Kuipers F, Krempf M, Cariou B, Costet P. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29:684–690. doi: 10.1161/ATVBAHA.108.181586.
    1. Ouguerram K, Chetiveaux M, Zair Y, Costet P, Abifadel M, Varret M, Boileau C, Magot T, Krempf M. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler Thromb Vasc Biol. 2004;24:1448–1453. doi: 10.1161/01.ATV.0000133684.77013.88.
    1. Kempen HJ, Glatz JF, Gevers Leuven JA, van der Voort HA, Katan MB. Serum lathosterol concentration is an indicator of whole-body cholesterol synthesis in humans. J Lipid Res. 1988;29:1149–1155.
    1. Stellaard F, von Bergmann K, Sudhop T, Lütjohann D. The value of surrogate markers to monitor cholesterol absorption, synthesis and bioconversion to bile acids under lipid lowering therapies. J Steroid Biochem Mol Biol. 2016:S0960-0760(16)30076-0. pii. doi: 10.1016/j.jsbmb.2016.03.030. [Epub ahead of print]
    1. Berg K. A new serum type system in man – the Lp system. Acta Pathol Microbiol Scand. 1963;59:369–382.
    1. Schmidt K, Noureen A, Kronenberg F, Utermann G. Structure, function, and genetics of lipoprotein (a). J Lipid Res. 2016;57:1339–1359. doi: 10.1194/jlr.R067314.
    1. Rader DJ, Cain W, Ikewaki K, Talley G, Zech LA, Usher D, Brewer HB., Jr. The inverse association of plasma lipoprotein(a) concentrations with apolipoprotein(a) isoform size is not due to differences in Lp(a) catabolism but to differences in production rate. J Clin Invest. 1994;93:2758–2763. doi: 10.1172/JCI117292.
    1. Rader DJ, Mann WA, Cain W, Kraft HG, Usher D, Zech LA, Hoeg JM, Davignon J, Lupien P, Grossman M. The low density lipoprotein receptor is not required for normal catabolism of Lp(a) in humans. J Clin Invest. 1995;95:1403–1408. doi: 10.1172/JCI117794.
    1. Cain WJ, Millar JS, Himebauch AS, Tietge UJ, Maugeais C, Usher D, Rader DJ. Lipoprotein [a] is cleared from the plasma primarily by the liver in a process mediated by apolipoprotein [a]. J Lipid Res. 2005;46:2681–2691. doi: 10.1194/jlr.M500249-JLR200.
    1. Romagnuolo R, Scipione CA, Boffa MB, Marcovina SM, Seidah NG, Koschinsky ML. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J Biol Chem. 2015;290:11649–11662. doi: 10.1074/jbc.M114.611988.
    1. Tada H, Kawashiri MA, Yoshida T, Teramoto R, Nohara A, Konno T, Inazu A, Mabuchi H, Yamagishi M, Hayashi K. Lipoprotein(a) in familial hypercholesterolemia with proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutations. Circ J. 2016;80:512–518. doi: 10.1253/circj.CJ-15-0999.
    1. Welder G, Zineh I, Pacanowski MA, Troutt JS, Cao G, Konrad RJ. High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J Lipid Res. 2010;51:2714–2721. doi: 10.1194/jlr.M008144.
    1. Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, Wasserman SM, Stein EA TESLA investigators. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:341–350. doi: 10.1016/S0140-6736(14)61374-X.
    1. Diffenderfer MR, Lamon-Fava S, Marcovina SM, Barrett PH, Lel J, Dolnikowski GG, Berglund L, Schaefer EJ. Distinct metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein(a). Metabolism. 2016;65:381–390. doi: 10.1016/j.metabol.2015.10.031.
    1. Jenner JL, Seman LJ, Millar JS, Lamon-Fava S, Welty FK, Dolnikowski GG, Marcovina SM, Lichtenstein AH, Barrett PH, deLuca C, Schaefer EJ. The metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein (a) in human beings. Metabolism. 2005;54:361–369. doi: 10.1016/j.metabol.2004.10.001.
    1. Frischmann ME, Ikewaki K, Trenkwalder E, Lamina C, Dieplinger B, Soufi M, Schweer H, Schaefer JR, König P, Kronenberg F, Dieplinger H. In vivo stable-isotope kinetic study suggests intracellular assembly of lipoprotein(a). Atherosclerosis. 2012;225:322–327. doi: 10.1016/j.atherosclerosis.2012.09.031.
    1. Parhofer KG, Demant T, Ritter MM, Geiss HC, Donner M, Schwandt P. Lipoprotein (a) metabolism estimated by nonsteady-state kinetics. Lipids. 1999;34:325–335.
    1. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331–340.

Source: PubMed

Подписаться