Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research

Olave E Krigolson, Chad C Williams, Angela Norton, Cameron D Hassall, Francisco L Colino, Olave E Krigolson, Chad C Williams, Angela Norton, Cameron D Hassall, Francisco L Colino

Abstract

In recent years there has been an increase in the number of portable low-cost electroencephalographic (EEG) systems available to researchers. However, to date the validation of the use of low-cost EEG systems has focused on continuous recording of EEG data and/or the replication of large system EEG setups reliant on event-markers to afford examination of event-related brain potentials (ERP). Here, we demonstrate that it is possible to conduct ERP research without being reliant on event markers using a portable MUSE EEG system and a single computer. Specifically, we report the results of two experiments using data collected with the MUSE EEG system-one using the well-known visual oddball paradigm and the other using a standard reward-learning task. Our results demonstrate that we could observe and quantify the N200 and P300 ERP components in the visual oddball task and the reward positivity (the mirror opposite component to the feedback-related negativity) in the reward-learning task. Specifically, single sample t-tests of component existence (all p's < 0.05), computation of Bayesian credible intervals, and 95% confidence intervals all statistically verified the existence of the N200, P300, and reward positivity in all analyses. We provide with this research paper an open source website with all the instructions, methods, and software to replicate our findings and to provide researchers with an easy way to use the MUSE EEG system for ERP research. Importantly, our work highlights that with a single computer and a portable EEG system such as the MUSE one can conduct ERP research with ease thus greatly extending the possible use of the ERP methodology to a variety of novel contexts.

Keywords: EEG; ERP; cognitive science; executive function; portable electronics.

Figures

Figure 1
Figure 1
The experimental trial time line for both tasks.
Figure 2
Figure 2
Conditional waveforms for the oddball task. Top: standard analysis (electrode Pz), middle: reduced analysis (pooled electrode TP9 & TP10), bottom: MUSE analysis (pooled electrode TP9 & TP10). Shaded regions reflect 95% confidence intervals around the grand average waveform.
Figure 3
Figure 3
Conditional waveforms of the reward learning task. Top: standard analysis (electrode FCz), middle: reduced analysis (pooled electrode AF7 & AF8), bottom: MUSE analysis (pooled electrode AF7 & AF8). Shaded regions reflect 95% confidence intervals around the grand average waveform.
Figure 4
Figure 4
Difference waveforms of the reduced and MUSE analysis for both tasks. Left: oddball task, right: reward learning task. Difference waveforms were created by subtracting the control condition from the oddball condition for the oddball task, and the loss condition from the win condition for the decision making task. Shaded regions reflect 95% confidence intervals around the grand average waveform.
Figure 5
Figure 5
Mean amplitudes with 95% confidence intervals of the N200 (left), P300 (middle), and reward positivity (right) for the standard, reduced, and MUSE analyses. Mean amplitudes were calculated by averaging 25 ms surrounding the respective peaks.
Figure 6
Figure 6
Resampling analysis to test the minimum number of participants needed to achieve statistical significance reported as the percent of significant-tests (p < 0.05) out of 10,000. The dashed horizontal line is placed at 95%.

References

    1. Badcock N. A., Mousikou P., Mahajan Y., de Lissa P., Thie J., McArthur G. (2013). Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs. PeerJ 1:e38. 10.7717/peerj.38
    1. Badcock N. A., Preece K. A., de Wit B., Glenn K., Fieder N., Thie J., et al. . (2015). Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ 3:e907. 10.7717/peerj.907
    1. Brainard D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436. 10.1163/156856897X00357
    1. Bray J., Sturman C. F. (2001). Bluetooth 1.1: Connect Without Cables. Upper Saddle River, NJ: Prentice Hall.
    1. Cadwell J. A., Villarreal R. A. (1999). Electrophysiologic equipment and electrical safety, in Electrodiagnosis in Clinical Neurology, ed Aminoff M. J. (New York, NY: Churchill Livingstone; ), 15–33.
    1. Coles M. G. H., Gratton G., Kramer A. F., Miller G. A. (1986). Principles of signal acquisition and analysis, in Psychophysiology: Systems, Processes, and Applications, eds Coles M. G. H., Donchin E., Porges S. W. (New York, NY: Guilford Press; ), 183–221.
    1. Debener S., Minow F., Emkes R., Gandras K., de Vos M. (2012). How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49, 1617–1621. 10.1111/j.1469-8986.2012.01471.x
    1. Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. 10.1016/j.jneumeth.2003.10.009
    1. Duvinage M., Castermans T., Petieau M., Hoellinger T., Cheron G., Dutoit T. (2013). Performance of the Emotiv Epoc headset for P300-based applications. Biomed. Eng. Online 12:56. 10.1186/1475-925X-12-56
    1. Gramann K., Ferris D. P., Gwin J., Makeig S. (2014). Imaging natural cognition in action. Int. J. Psychophysiol. 91, 22–29. 10.1016/j.ijpsycho.2013.09.003
    1. Holroyd C. B., Coles M. G. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109:679. 10.1037/0033-295X.109.4.679
    1. Kutas M. (1997). Views on how the electrical activity that the brain generates reflects the functions of different language structures. Psychophysiology 34, 383–398. 10.1111/j.1469-8986.1997.tb02382.x
    1. Kuziek J. W., Shienh A., Mathewson K. E. (2017). Transitioning EEG experiments away from the laboratory using a Raspberry Pi 2. J. Neurosci. Methods 277, 75–82. 10.1016/j.jneumeth.2016.11.013
    1. Luck S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd Edn. Cambridge, MA: MIT Press.
    1. Luque J. R., Morón M. J., Casilari E. (2012). Analytical and empirical evaluation of the impact of Gaussian noise on the modulations employed by Bluetooth Enhanced Data Rates. EURASIP J. Wireless Commun. Networking 2012:94 10.1186/1687-1499-2012-94
    1. Maskeliunas R., Damasevicius R., Martisius I., Vasiljevas M. (2016). Consumer-grade EEG devices: are they usable for control tasks? Peer J 4:e1746. 10.7717/peerj.1746
    1. Picton T. W., Bentin S., Berg P., Donchin E., Hillyard S. A., Johnson R., et al. . (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37, 127–152. 10.1111/1469-8986.3720127
    1. Proudfit G. H. (2015). The reward positivity: from basic research on reward to a biomarker for depression. Psychophysiology 52, 449–459. 10.1111/psyp.12370
    1. Rugg M. D., Coles M. G. (1995). Electrophysiology of Mind: Event-Related Brain Potentials and Cognition. Oxford, UK: Oxford University Press.
    1. Shorey R., Miller B. A. (2000). The Bluetooth technology: merits and limitations. In Personal Wireless Communications, in 2000 IEEE International Conference on Multimedia and Expo – ICME2000 (Hyderabad: ), 80–84.
    1. Squires N. K., Squires K. C., Hillyard S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 38, 387–401. 10.1016/0013-4694(75)90263-1
    1. Srinivasan R., Tucker D. M., Murias M. (1998). Estimating the spatial Nyquist of the human EEG. Behav. Res. Methods Instrum. Comput. 30, 8–19. 10.3758/BF03209412
    1. Vos M. D., Gandras K., Debener S. (2014). Towards a truly mobile brain computer interface: exploring the P300 to take away. Int. J. Psychophysiol. 91, 46–53. 10.1016/j.ijpsycho.2013.08.010
    1. Wascher E., Heppner H., Hoffmann S. (2014). Towards the measurement of event-related EEG activity in real-life working environments. Int. J. Psychophysiol. 91, 3–9. 10.1016/j.ijpsycho.2013.10.006
    1. Wong S. W. H., Chan R. H. M., Mak J. N. (2014). Spectral modulation of frontal EEG during motor skill acquisition: a mobile EEG study. Int. J. Psychophysiol. 91, 16–21. 10.1016/j.ijpsycho.2013.09.004

Source: PubMed

Подписаться