C-Fiber Assays in the Cornea vs. Skin

Eric A Moulton, David Borsook, Eric A Moulton, David Borsook

Abstract

C-fibers are unmyelinated nerve fibers that transmit high threshold mechanical, thermal, and chemical signals that are associated with pain sensations. This review examines current literature on measuring altered peripheral nerve morphology and discusses the most relevant aspects of corneal microscopy, especially whether corneal imaging presents significant method advantages over skin biopsy. Given its relative merits, corneal confocal microscopy would seem to be a more practical and patient-centric approach than utilizing skin biopsies.

Keywords: corneal nerves; in vivo corneal confocal microscopy; innervation; intraepidermal skin biopsy; neuropathic pain; nociceptors; small fiber neuropathy; subbasal nerve plexus.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Shaheen B.S., Bakir M., Jain S. Corneal nerves in health and disease. Surv. Ophthalmol. 2014;59:263–285. doi: 10.1016/j.survophthal.2013.09.002.
    1. Belmonte C., Acosta M.C., Gallar J. Neural basis of sensation in intact and injured corneas. Exp. Eye Res. 2004;78:513–525. doi: 10.1016/j.exer.2003.09.023.
    1. Prato V., Taberner F.J., Hockley J.R.F., Callejo G., Arcourt A., Tazir B., Hammer L., Schad P., Heppenstall P.A., Smith E.S., et al. Functional and Molecular Characterization of Mechanoinsensitive “Silent” Nociceptors. Cell Rep. 2017;21:3102–3115. doi: 10.1016/j.celrep.2017.11.066.
    1. González-González O., Bech F., Gallar J., Merayo-Lloves J., Belmonte C. Functional Properties of Sensory Nerve Terminals of the Mouse Cornea. Investig. Ophthalmol. Vis. Sci. 2017;58:404–415. doi: 10.1167/iovs.16-20033.
    1. Müller L.J., Marfurt C.F., Kruse F., Tervo T.M.T. Corneal nerves: Structure, contents and function. Exp. Eye Res. 2003;76:521–542. doi: 10.1016/S0014-4835(03)00050-2.
    1. Cavalier Y., Albrecht P.J., Amory C., Bernardini G.L., Argoff C.E. Presence of Decreased Intraepidermal Nerve Fiber Density Consistent with Small Fiber Neuropathy in Patients with Central Post-Stroke Pain. Pain Med. 2016;17:1569–1571. doi: 10.1093/pm/pnw001.
    1. Khoshnoodi M.A., Truelove S., Burakgazi A., Hoke A., Mammen A.L., Polydefkis M. Longitudinal Assessment of Small Fiber Neuropathy: Evidence of a Non-Length-Dependent Distal Axonopathy. JAMA Neurol. 2016;73:684–690. doi: 10.1001/jamaneurol.2016.0057.
    1. Kosmidis M.L., Koutsogeorgopoulou L., Alexopoulos H., Mamali I., Vlachoyiannopoulos P.G., Voulgarelis M., Moutsopoulos H.M., Tzioufas A.G., Dalakas M.C. Reduction of Intraepidermal Nerve Fiber Density (IENFD) in the skin biopsies of patients with fibromyalgia: A controlled study. J. Neurol. Sci. 2014;347:143–147. doi: 10.1016/j.jns.2014.09.035.
    1. Truini A., Biasiotta A., Di Stefano G., Leone C., La Cesa S., Galosi E., Piroso S., Pepe A., Giordano C., Cruccu G. Does the epidermal nerve fibre density measured by skin biopsy in patients with peripheral neuropathies correlate with neuropathic pain? Pain. 2014;155:828–832. doi: 10.1016/j.pain.2014.01.022.
    1. Velasco R., Navarro X., Gil-Gil M., Herrando-Grabulosa M., Calls A., Bruna J. Neuropathic Pain and Nerve Growth Factor in Chemotherapy-Induced Peripheral Neuropathy: Prospective Clinical-Pathological Study. J. Pain Symptom Manag. 2017;54:815–825. doi: 10.1016/j.jpainsymman.2017.04.021.
    1. Sommer C. Skin biopsy as a diagnostic tool. Curr. Opin. Neurol. 2008;21:563–568. doi: 10.1097/WCO.0b013e328309000c.
    1. Wang E.F., Misra S.L., Patel D.V. In Vivo Confocal Microscopy of the Human Cornea in the Assessment of Peripheral Neuropathy and Systemic Diseases. BioMed Res. Int. 2015;2015:951081. doi: 10.1155/2015/951081.
    1. Chen X., Levine J.D. Hyper-responsivity in a subset of C-fiber nociceptors in a model of painful diabetic neuropathy in the rat. Neuroscience. 2001;102:185–192. doi: 10.1016/S0306-4522(00)00454-1.
    1. Andrew D., Greenspan J.D. Mechanical and Heat Sensitization of Cutaneous Nociceptors after Peripheral Inflammation in the Rat. J. Neurophysiol. 1999;82:2649–2656. doi: 10.1152/jn.1999.82.5.2649.
    1. Sjöberg J., Kanje M. The initial period of peripheral nerve regeneration and the importance of the local environment for the conditioning lesion effect. Brain Res. 1990;529:79–84. doi: 10.1016/0006-8993(90)90812-P.
    1. Simone D.A., Nolano M., Johnson T., Wendelschafer-Crabb G., Kennedy W.R. Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: Correlation with sensory function. J. Neurosci. 1998;18:8947–8959. doi: 10.1523/JNEUROSCI.18-21-08947.1998.
    1. Polydefkis M., Hauer P., Sheth S., Sirdofsky M., Griffin J.W., McArthur J.C. The time course of epidermal nerve fibre regeneration: Studies in normal controls and in people with diabetes, with and without neuropathy. Brain. 2004;127:1606–1615. doi: 10.1093/brain/awh175.
    1. Hahn K., Triolo A., Hauer P., McArthur J.C., Polydefkis M. Impaired reinnervation in HIV infection following experimental denervation. Neurology. 2007;68:1251–1256. doi: 10.1212/01.wnl.0000261245.36884.7c.
    1. Kiryu-Seo S., Kiyama H. Mitochondrial behavior during axon regeneration/degeneration in vivo. Neurosci. Res. 2019;139:42–47. doi: 10.1016/j.neures.2018.08.014.
    1. Liu P., Peng J., Han G.-H., Ding X., Wei S., Gao G., Huang K., Chang F., Wang Y. Role of macrophages in peripheral nerve injury and repair. Neural Regen. Res. 2019;14:1335–1342.
    1. Myers M.I., Peltier A.C. Uses of skin biopsy for sensory and autonomic nerve assessment. Curr. Neurol. Neurosci. Rep. 2013;13:323. doi: 10.1007/s11910-012-0323-2.
    1. Lauria G., Cornblath D.R., Johansson O., McArthur J.C., Mellgren S.I., Nolano M., Rosenberg N., Sommer C. European Federation of Neurological Societies EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur. J. Neurol. 2005;12:747–758. doi: 10.1111/j.1468-1331.2005.01260.x.
    1. Smith A.G., Howard J.R., Kroll R., Ramachandran P., Hauer P., Singleton J.R., McArthur J. The reliability of skin biopsy with measurement of intraepidermal nerve fiber density. J. Neurol. Sci. 2005;228:65–69. doi: 10.1016/j.jns.2004.09.032.
    1. Hlubocky A., Wellik K., Ross M.A., Smith B.E., Hoffman-Snyder C., Demaerschalk B.M., Wingerchuk D.M. Skin biopsy for diagnosis of small fiber neuropathy: A critically appraised topic. Neurologist. 2010;16:61–63. doi: 10.1097/NRL.0b013e3181c9c303.
    1. McArthur J.C., Stocks E.A., Hauer P., Cornblath D.R., Griffin J.W. Epidermal nerve fiber density: Normative reference range and diagnostic efficiency. Arch. Neurol. 1998;55:1513–1520. doi: 10.1001/archneur.55.12.1513.
    1. Wu T., Ahmed A., Bril V., Orszag A., Ng E., Nwe P., Perkins B.A. Variables associated with corneal confocal microscopy parameters in healthy volunteers: Implications for diabetic neuropathy screening. Diabet. Med. 2012;29:e297–e303. doi: 10.1111/j.1464-5491.2012.03678.x.
    1. Tavakoli M., Ferdousi M., Petropoulos I.N., Morris J., Pritchard N., Zhivov A., Ziegler D., Pacaud D., Romanchuk K., Perkins B.A., et al. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: A multinational normative data set. Diabetes Care. 2015;38:838–843. doi: 10.2337/dc14-2311.
    1. Ling L., Xue J., Liu Y., Su L., Li H., Jiang Y., Cai Y., Zhang H. Quantitative and morphological study of intraepidermal nerve fibre in healthy individuals. Neurol. Res. 2015;37:974–978. doi: 10.1179/1743132815Y.0000000082.
    1. Niederer R.L., Perumal D., Sherwin T., McGhee C.N.J. Age-related differences in the normal human cornea: A laser scanning in vivo confocal microscopy study. Br. J. Ophthalmol. 2007;91:1165–1169. doi: 10.1136/bjo.2006.112656.
    1. Lauria G., Holland N., Hauer P., Cornblath D.R., Griffin J.W., McArthur J.C. Epidermal innervation: Changes with aging, topographic location, and in sensory neuropathy. J. Neurol. Sci. 1999;164:172–178. doi: 10.1016/S0022-510X(99)00063-5.
    1. Provitera V., Gibbons C.H., Wendelschafer-Crabb G., Donadio V., Vitale D.F., Stancanelli A., Caporaso G., Liguori R., Wang N., Santoro L., et al. A multi-center, multinational age- and gender-adjusted normative dataset for immunofluorescent intraepidermal nerve fiber density at the distal leg. Eur. J. Neurol. 2016;23:333–338. doi: 10.1111/ene.12842.
    1. Nolano M., Simone D.A., Wendelschafer-Crabb G., Johnson T., Hazen E., Kennedy W.R. Topical capsaicin in humans: Parallel loss of epidermal nerve fibers and pain sensation. Pain. 1999;81:135–145. doi: 10.1016/S0304-3959(99)00007-X.
    1. Wehrfritz A., Namer B., Ihmsen H., Mueller C., Filitz J., Koppert W., Leffler A. Differential effects on sensory functions and measures of epidermal nerve fiber density after application of a lidocaine patch (5%) on healthy human skin. Eur. J. Pain. 2011;15:907–912. doi: 10.1016/j.ejpain.2011.03.011.
    1. Tepelus T.C., Chiu G.B., Huang J., Huang P., Sadda S.R., Irvine J., Lee O.L. Correlation between corneal innervation and inflammation evaluated with confocal microscopy and symptomatology in patients with dry eye syndromes: A preliminary study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017;255:1771–1778. doi: 10.1007/s00417-017-3680-3.
    1. Theophanous C., Jacobs D.S., Hamrah P. Corneal Neuralgia after LASIK. Optom. Vis. Sci. 2015;92:e233–e240. doi: 10.1097/OPX.0000000000000652.
    1. Cavalcanti B.M., Cruzat A., Sahin A., Pavan-Langston D., Samayoa E., Hamrah P. In vivo confocal microscopy detects bilateral changes of corneal immune cells and nerves in unilateral herpes zoster ophthalmicus. Ocul. Surf. 2018;16:101–111. doi: 10.1016/j.jtos.2017.09.004.
    1. Kinard K.I., Smith A.G., Singleton J.R., Lessard M.K., Katz B.J., Warner J.E.A., Crum A.V., Mifflin M.D., Brennan K.C., Digre K.B. Chronic migraine is associated with reduced corneal nerve fiber density and symptoms of dry eye. Headache. 2015;55:543–549. doi: 10.1111/head.12547.
    1. Shetty R., Deshmukh R., Shroff R., Dedhiya C., Jayadev C. Subbasal Nerve Plexus Changes in Chronic Migraine. Cornea. 2018;37:72–75. doi: 10.1097/ICO.0000000000001403.
    1. Erkan Turan K., Kocabeyoglu S., Unal-Cevik I., Bezci F., Akinci A., Irkec M. Ocular Surface Alterations in the Context of Corneal In Vivo Confocal Microscopic Characteristics in Patients with Fibromyalgia. Cornea. 2018;37:205–210. doi: 10.1097/ICO.0000000000001447.
    1. Ramírez M., Martínez-Martínez L.-A., Hernández-Quintela E., Velazco-Casapía J., Vargas A., Martínez-Lavín M. Small fiber neuropathy in women with fibromyalgia. An in vivo assessment using corneal confocal bio-microscopy. Semin. Arthritis Rheum. 2015;45:214–219. doi: 10.1016/j.semarthrit.2015.03.003.
    1. Ferdousi M., Azmi S., Petropoulos I.N., Fadavi H., Ponirakis G., Marshall A., Tavakoli M., Malik I., Mansoor W., Malik R.A. Corneal Confocal Microscopy Detects Small Fibre Neuropathy in Patients with Upper Gastrointestinal Cancer and Nerve Regeneration in Chemotherapy Induced Peripheral Neuropathy. PLoS ONE. 2015;10:e0139394. doi: 10.1371/journal.pone.0139394.
    1. Bucher F., Schneider C., Blau T., Cursiefen C., Fink G.R., Lehmann H.C., Heindl L.M. Small-Fiber Neuropathy Is Associated with Corneal Nerve and Dendritic Cell Alterations: An In Vivo Confocal Microscopy Study. Cornea. 2015;34:1114–1119. doi: 10.1097/ICO.0000000000000535.
    1. Pereira M.P., Mühl S., Pogatzki-Zahn E.M., Agelopoulos K., Ständer S. Intraepidermal Nerve Fiber Density: Diagnostic and Therapeutic Relevance in the Management of Chronic Pruritus: A Review. Derm. Ther. (Heidelb.) 2016;6:509–517. doi: 10.1007/s13555-016-0146-1.
    1. Dhillon V.K., Elalfy M.S., Al-Aqaba M., Gupta A., Basu S., Dua H.S. Corneal hypoesthesia with normal sub-basal nerve density following surgery for trigeminal neuralgia. Acta Ophthalmol. 2016;94:e6–e10. doi: 10.1111/aos.12697.
    1. Bianciardi G., Latronico M.E., Traversi C. Entropy of corneal nerve fibers distribution observed by laser scanning confocal microscopy: A noninvasive quantitative method to characterize the corneal innervation in Sjogren’s syndrome patients. Microsc. Res. Tech. 2015;78:1069–1074. doi: 10.1002/jemt.22586.
    1. Gøransson L.G., Brun J.G., Harboe E., Mellgren S.I., Omdal R. Intraepidermal nerve fiber densities in chronic inflammatory autoimmune diseases. Arch. Neurol. 2006;63:1410–1413. doi: 10.1001/archneur.63.10.1410.
    1. Bitirgen G., Tinkir Kayitmazbatir E., Satirtav G., Malik R.A., Ozkagnici A. In Vivo Confocal Microscopic Evaluation of Corneal Nerve Fibers and Dendritic Cells in Patients with Behçet’s Disease. Front. Neurol. 2018;9:204. doi: 10.3389/fneur.2018.00204.
    1. Oudejans L.C., Niesters M., Brines M., Dahan A., van Velzen M. Quantification of small fiber pathology in patients with sarcoidosis and chronic pain using cornea confocal microscopy and skin biopsies. J. Pain Res. 2017;10:2057–2065. doi: 10.2147/JPR.S142683.
    1. Bakkers M., Merkies I.S.J., Lauria G., Devigili G., Penza P., Lombardi R., Hermans M.C.E., van Nes S.I., De Baets M., Faber C.G. Intraepidermal nerve fiber density and its application in sarcoidosis. Neurology. 2009;73:1142–1148. doi: 10.1212/WNL.0b013e3181bacf05.
    1. Resch M.D., Marsovszky L., Németh J., Bocskai M., Kovács L., Balog A. Dry eye and corneal langerhans cells in systemic lupus erythematosus. J. Ophthalmol. 2015;2015:543835. doi: 10.1155/2015/543835.
    1. Gøransson L.G., Tjensvoll A.B., Herigstad A., Mellgren S.I., Omdal R. Small-diameter nerve fiber neuropathy in systemic lupus erythematosus. Arch. Neurol. 2006;63:401–404. doi: 10.1001/archneur.63.3.401.
    1. Alam U., Jeziorska M., Petropoulos I.N., Asghar O., Fadavi H., Ponirakis G., Marshall A., Tavakoli M., Boulton A.J.M., Efron N., et al. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS ONE. 2017;12:e0180175. doi: 10.1371/journal.pone.0180175.
    1. Bönhof G.J., Strom A., Püttgen S., Ringel B., Brüggemann J., Bódis K., Müssig K., Szendroedi J., Roden M., Ziegler D. Patterns of cutaneous nerve fibre loss and regeneration in type 2 diabetes with painful and painless polyneuropathy. Diabetologia. 2017;60:2495–2503. doi: 10.1007/s00125-017-4438-5.
    1. Singleton J.R., Marcus R.L., Lessard M.K., Jackson J.E., Smith A.G. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients. Ann. Neurol. 2015;77:146–153. doi: 10.1002/ana.24310.
    1. Sun B., Liu L.-Z., Li Y.-F., Chen Z.-H., Ling L., Yang F., Cui F., Huang X.-S. Clinical Characteristics, Electrophysiology, and Skin Biopsy of 38 Peripheral Neuropathy Cases with Small Fiber Involvement of Various Etiologies. Chin. Med. J. 2017;130:1683–1688. doi: 10.4103/0366-6999.209897.
    1. Mimura T., Amano S., Fukuoka S., Honda N., Arita R., Ochiai M., Yanagisawa M., Usui T., Ono K., Araki F., et al. In vivo confocal microscopy of hereditary sensory and autonomic neuropathy. Curr. Eye Res. 2008;33:940–945. doi: 10.1080/02713680802450992.
    1. Shetty R., Deshpande K., Deshmukh R., Jayadev C., Shroff R. Bowman Break and Subbasal Nerve Plexus Changes in a Patient with Dry Eye Presenting With Chronic Ocular Pain and Vitamin D Deficiency. Cornea. 2016;35:688–691. doi: 10.1097/ICO.0000000000000785.
    1. Rousseau A., Cauquil C., Dupas B., Labbé A., Baudouin C., Barreau E., Théaudin M., Lacroix C., Guiochon-Mantel A., Benmalek A., et al. Potential Role of In Vivo Confocal Microscopy for Imaging Corneal Nerves in Transthyretin Familial Amyloid Polyneuropathy. JAMA Ophthalmol. 2016;134:983–989. doi: 10.1001/jamaophthalmol.2016.1889.
    1. Chao C.-C., Hsueh H.-W., Kan H.-W., Liao C.-H., Jiang H.-H., Chiang H., Lin W.-M., Yeh T.-Y., Lin Y.-H., Cheng Y.-Y., et al. Skin nerve pathology: Biomarkers of premanifest and manifest amyloid neuropathy. Ann. Neurol. 2019;85:560–573. doi: 10.1002/ana.25433.
    1. Schneider C., Bucher F., Cursiefen C., Fink G.R., Heindl L.M., Lehmann H.C. Corneal confocal microscopy detects small fiber damage in chronic inflammatory demyelinating polyneuropathy (CIDP) J. Peripher. Nerv. Syst. 2014;19:322–327. doi: 10.1111/jns.12098.
    1. Lalive P.H., Truffert A., Magistris M.R., Landis T., Dosso A. Peripheral autoimmune neuropathy assessed using corneal in vivo confocal microscopy. Arch. Neurol. 2009;66:403–405. doi: 10.1001/archneurol.2008.587.
    1. Kemp H.I., Petropoulos I.N., Rice A.S.C., Vollert J., Maier C., Strum D., Schargus M., Peto T., Hau S., Chopra R., et al. Use of Corneal Confocal Microscopy to Evaluate Small Nerve Fibers in Patients with Human Immunodeficiency Virus. JAMA Ophthalmol. 2017;135:795–800. doi: 10.1001/jamaophthalmol.2017.1703.
    1. Polydefkis M., Yiannoutsos C.T., Cohen B.A., Hollander H., Schifitto G., Clifford D.B., Simpson D.M., Katzenstein D., Shriver S., Hauer P., et al. Reduced intraepidermal nerve fiber density in HIV-associated sensory neuropathy. Neurology. 2002;58:115–119. doi: 10.1212/WNL.58.1.115.
    1. Zhou L., Kitch D.W., Evans S.R., Hauer P., Raman S., Ebenezer G.J., Gerschenson M., Marra C.M., Valcour V., Diaz-Arrastia R., et al. Correlates of epidermal nerve fiber densities in HIV-associated distal sensory polyneuropathy. Neurology. 2007;68:2113–2119. doi: 10.1212/01.wnl.0000264888.87918.a1.
    1. Gröne E., Üçeyler N., Abahji T., Fleckenstein J., Irnich D., Mussack T., Hoffmann U., Sommer C., Lang P.M. Reduced intraepidermal nerve fiber density in patients with chronic ischemic pain in peripheral arterial disease. Pain. 2014;155:1784–1792. doi: 10.1016/j.pain.2014.06.003.
    1. Tavakoli M., Marshall A., Banka S., Petropoulos I.N., Fadavi H., Kingston H., Malik R.A. Corneal confocal microscopy detects small-fiber neuropathy in Charcot-Marie-Tooth disease type 1A patients. Muscle Nerve. 2012;46:698–704. doi: 10.1002/mus.23377.
    1. Duchesne M., Danigo A., Richard L., Vallat J.-M., Attarian S., Gonnaud P.-M., Lacour A., Péréon Y., Stojkovic T., Nave K.-A., et al. Skin Biopsy Findings in Patients With CMT1A: Baseline Data From the CLN-PXT3003-01 Study Provide New Insights Into the Pathophysiology of the Disorder. J. Neuropathol. Exp. Neurol. 2018;77:274–281. doi: 10.1093/jnen/nly001.
    1. Kass-Iliyya L., Javed S., Gosal D., Kobylecki C., Marshall A., Petropoulos I.N., Ponirakis G., Tavakoli M., Ferdousi M., Chaudhuri K.R., et al. Small fiber neuropathy in Parkinson’s disease: A clinical, pathological and corneal confocal microscopy study. Parkinsonism Relat. Disord. 2015;21:1454–1460. doi: 10.1016/j.parkreldis.2015.10.019.
    1. Lin C.-H., Chao C.-C., Wu S.-W., Hsieh P.-C., Feng F.-P., Lin Y.-H., Chen Y.-M., Wu R.-M., Hsieh S.-T. Pathophysiology of Small-Fiber Sensory System in Parkinson’s Disease: Skin Innervation and Contact Heat Evoked Potential. Medicine (Baltimore) 2016;95:e3058. doi: 10.1097/MD.0000000000003058.
    1. Khan A., Kamran S., Akhtar N., Ponirakis G., Al-Muhannadi H., Petropoulos I.N., Al-Fahdawi S., Qahwaji R., Sartaj F., Babu B., et al. Corneal Confocal Microscopy detects a Reduction in Corneal Endothelial Cells and Nerve Fibres in Patients with Acute Ischemic Stroke. Sci. Rep. 2018;8:17333. doi: 10.1038/s41598-018-35298-3.
    1. Tavakoli M., Marshall A., Thompson L., Kenny M., Waldek S., Efron N., Malik R.A. Corneal confocal microscopy: A novel noninvasive means to diagnose neuropathy in patients with Fabry disease. Muscle Nerve. 2009;40:976–984. doi: 10.1002/mus.21383.
    1. Üçeyler N., He L., Schönfeld D., Kahn A.-K., Reiners K., Hilz M.J., Breunig F., Sommer C. Small fibers in Fabry disease: Baseline and follow-up data under enzyme replacement therapy. J. Peripher. Nerv. Syst. 2011;16:304–314. doi: 10.1111/j.1529-8027.2011.00365.x.
    1. Dalla Bella E., Lombardi R., Porretta-Serapiglia C., Ciano C., Gellera C., Pensato V., Cazzato D., Lauria G. Amyotrophic lateral sclerosis causes small fiber pathology. Eur. J. Neurol. 2016;23:416–420. doi: 10.1111/ene.12936.
    1. Mikolajczak J., Zimmermann H., Kheirkhah A., Kadas E.M., Oberwahrenbrock T., Muller R., Ren A., Kuchling J., Dietze H., Prüss H., et al. Patients with multiple sclerosis demonstrate reduced subbasal corneal nerve fibre density. Mult. Scler. 2017;23:1847–1853. doi: 10.1177/1352458516677590.
    1. Sturniolo G.C., Lazzarini D., Bartolo O., Berton M., Leonardi A., Fregona I.A., Parrozzani R., Midena E. Small fiber peripheral neuropathy in Wilson disease: An in vivo documentation by corneal confocal microscopy. Investig. Ophthalmol. Vis. Sci. 2015;56:1390–1395. doi: 10.1167/iovs.14-15004.
    1. Pagovich O.E., Vo M.L., Zhao Z.Z., Petropoulos I.N., Yuan M., Lertsuwanroj B., Ciralsky J., Lai E., Kiss S., D’Amico D.J., et al. Corneal confocal microscopy: Neurologic disease biomarker in Friedreich ataxia. Ann. Neurol. 2018;84:893–904. doi: 10.1002/ana.25355.
    1. Indelicato E., Nachbauer W., Eigentler A., Rudzki D., Wanschitz J., Boesch S. Intraepidermal Nerve Fiber Density in Friedreich’s Ataxia. J. Neuropathol. Exp. Neurol. 2018;77:1137–1143. doi: 10.1093/jnen/nly100.
    1. Villani E., Garoli E., Bassotti A., Magnani F., Tresoldi L., Nucci P., Ratiglia R. The cornea in classic type Ehlers-Danlos syndrome: Macro- and microstructural changes. Investig. Ophthalmol. Vis. Sci. 2013;54:8062–8068. doi: 10.1167/iovs.13-12837.
    1. Cazzato D., Castori M., Lombardi R., Caravello F., Bella E.D., Petrucci A., Grammatico P., Dordoni C., Colombi M., Lauria G. Small fiber neuropathy is a common feature of Ehlers-Danlos syndromes. Neurology. 2016;87:155–159. doi: 10.1212/WNL.0000000000002847.
    1. González-Duarte A., Lem M., Díaz-Díaz E., Castillo C., Cárdenas-Soto K. The Efficacy of Pregabalin in the Treatment of Prediabetic Neuropathic Pain. Clin. J. Pain. 2016;32:927–932. doi: 10.1097/AJP.0000000000000339.
    1. Villani E., Garoli E., Termine V., Pichi F., Ratiglia R., Nucci P. Corneal Confocal Microscopy in Dry Eye Treated with Corticosteroids. Optom. Vis. Sci. 2015;92:e290–e295. doi: 10.1097/OPX.0000000000000600.
    1. Iaccheri B., Torroni G., Cagini C., Fiore T., Cerquaglia A., Lupidi M., Cillino S., Dua H.S. Corneal confocal scanning laser microscopy in patients with dry eye disease treated with topical cyclosporine. Eye (Lond.) 2017;31:788–794. doi: 10.1038/eye.2017.3.
    1. Culver D.A., Dahan A., Bajorunas D., Jeziorska M., van Velzen M., Aarts L.P.H.J., Tavee J., Tannemaat M.R., Dunne A.N., Kirk R.I., et al. Cibinetide Improves Corneal Nerve Fiber Abundance in Patients with Sarcoidosis-Associated Small Nerve Fiber Loss and Neuropathic Pain. Investig. Ophthalmol. Vis. Sci. 2017;58:BIO52–BIO60. doi: 10.1167/iovs.16-21291.
    1. Stuard W.L., Gallerson B.K., Robertson D.M. Alterations in corneal nerves following crack cocaine use mimic diabetes-induced nerve damage. Endocrinol. Diabetes Metab. Case Rep. 2017;2017:16–131. doi: 10.1530/EDM-16-0131.
    1. Güneş H.N., Bekircan-Kurt C.E., Tan E., Erdem-Özdamar S. The histopathological evaluation of small fiber neuropathy in patients with vitamin B12 deficiency. Acta Neurol. Belg. 2018;118:405–410. doi: 10.1007/s13760-017-0847-y.
    1. Jin P., Cheng L., Chen M., Zhou L. Low Sensitivity of Skin Biopsy in Diagnosing Small Fiber Neuropathy in Chinese Americans. J. Clin. Neuromuscul. Dis. 2018;20:1–6. doi: 10.1097/CND.0000000000000223.
    1. Besné I., Descombes C., Breton L. Effect of age and anatomical site on density of sensory innervation in human epidermis. Arch. Dermatol. 2002;138:1445–1450. doi: 10.1001/archderm.138.11.1445.
    1. Kissel J.T., Smith A.G. Understanding Small Fiber Neuropathy: The Long and Short of It. JAMA Neurol. 2016;73:635–637. doi: 10.1001/jamaneurol.2016.0256.
    1. Podgorny P.J., Suchowersky O., Romanchuk K.G., Feasby T.E. Evidence for small fiber neuropathy in early Parkinson’s disease. Parkinsonism Relat. Disord. 2016;28:94–99. doi: 10.1016/j.parkreldis.2016.04.033.
    1. Nolano M., Provitera V., Manganelli F., Iodice R., Caporaso G., Stancanelli A., Marinou K., Lanzillo B., Santoro L., Mora G. Non-motor involvement in amyotrophic lateral sclerosis: New insight from nerve and vessel analysis in skin biopsy. Neuropathol. Appl. Neurobiol. 2017;43:119–132. doi: 10.1111/nan.12332.
    1. Ren Y., Liu W., Li Y., Sun B., Li Y., Yang F., Wang H., Li M., Cui F., Huang X. Cutaneous somatic and autonomic nerve TDP-43 deposition in amyotrophic lateral sclerosis. J. Neurol. 2018;265:1753–1763. doi: 10.1007/s00415-018-8897-5.
    1. Malik R.A., Kallinikos P., Abbott C.A., van Schie C.H.M., Morgan P., Efron N., Boulton A.J.M. Corneal confocal microscopy: A non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia. 2003;46:683–688. doi: 10.1007/s00125-003-1086-8.
    1. Dehghani C., Pritchard N., Edwards K., Russell A.W., Malik R.A., Efron N. Fully automated, semiautomated, and manual morphometric analysis of corneal subbasal nerve plexus in individuals with and without diabetes. Cornea. 2014;33:696–702. doi: 10.1097/ICO.0000000000000152.
    1. Kalteniece A., Ferdousi M., Adam S., Schofield J., Azmi S., Petropoulos I., Soran H., Malik R.A. Corneal confocal microscopy is a rapid reproducible ophthalmic technique for quantifying corneal nerve abnormalities. PLoS ONE. 2017;12:e0183040. doi: 10.1371/journal.pone.0183040.
    1. Petropoulos I.N., Alam U., Fadavi H., Marshall A., Asghar O., Dabbah M.A., Chen X., Graham J., Ponirakis G., Boulton A.J.M., et al. Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy. Investig. Ophthalmol. Vis. Sci. 2014;55:2071–2078. doi: 10.1167/iovs.13-13787.
    1. Kheirkhah A., Muller R., Mikolajczak J., Ren A., Kadas E.M., Zimmermann H., Pruess H., Paul F., Brandt A.U., Hamrah P. Comparison of Standard Versus Wide-Field Composite Images of the Corneal Subbasal Layer by In Vivo Confocal Microscopy. Investig. Ophthalmol. Vis. Sci. 2015;56:5801–5807. doi: 10.1167/iovs.15-17434.
    1. Allgeier S., Bartschat A., Bohn S., Peschel S., Reichert K.-M., Sperlich K., Walckling M., Hagenmeyer V., Mikut R., Stachs O., et al. 3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus. Sci. Rep. 2018;8:7468. doi: 10.1038/s41598-018-25915-6.
    1. Chen X., Graham J., Dabbah M.A., Petropoulos I.N., Tavakoli M., Malik R.A. An Automatic Tool for Quantification of Nerve Fibers in Corneal Confocal Microscopy Images. IEEE Trans. Biomed. Eng. 2017;64:786–794. doi: 10.1109/TBME.2016.2573642.
    1. Chen X., Graham J., Dabbah M.A., Petropoulos I.N., Ponirakis G., Asghar O., Alam U., Marshall A., Fadavi H., Ferdousi M., et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: Comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care. 2015;38:1138–1144. doi: 10.2337/dc14-2422.
    1. Hertz P., Bril V., Orszag A., Ahmed A., Ng E., Nwe P., Ngo M., Perkins B.A. Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet. Med. 2011;28:1253–1260. doi: 10.1111/j.1464-5491.2011.03299.x.
    1. Brines M., Culver D.A., Ferdousi M., Tannemaat M.R., van Velzen M., Dahan A., Malik R.A. Corneal nerve fiber size adds utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy. Sci. Rep. 2018;8:4734. doi: 10.1038/s41598-018-23107-w.
    1. Mehra S., Tavakoli M., Kallinikos P.A., Efron N., Boulton A.J.M., Augustine T., Malik R.A. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care. 2007;30:2608–2612. doi: 10.2337/dc07-0870.
    1. Petropoulos I.N., Kamran S., Li Y., Khan A., Ponirakis G., Akhtar N., Deleu D., Shuaib A., Malik R.A. Corneal Confocal Microscopy: An Imaging Endpoint for Axonal Degeneration in Multiple Sclerosis. Investig. Ophthalmol. Vis. Sci. 2017;58:3677–3681. doi: 10.1167/iovs.17-22050.
    1. Stettner M., Hinrichs L., Guthoff R., Bairov S., Petropoulos I.N., Warnke C., Hartung H.-P., Malik R.A., Kieseier B.C. Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy. Ann. Clin. Transl. Neurol. 2016;3:88–100. doi: 10.1002/acn3.275.
    1. Pritchard N., Edwards K., Russell A.W., Perkins B.A., Malik R.A., Efron N. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes Care. 2015;38:671–675. doi: 10.2337/dc14-2114.
    1. Kalteniece A., Ferdousi M., Petropoulos I., Azmi S., Adam S., Fadavi H., Marshall A., Boulton A.J.M., Efron N., Faber C.G., et al. Greater corneal nerve loss at the inferior whorl is related to the presence of diabetic neuropathy and painful diabetic neuropathy. Sci. Rep. 2018;8:3283. doi: 10.1038/s41598-018-21643-z.
    1. Chen D. Master’s Thesis. University of Houston; Houston, TX, USA: May, 2016. Safety Evaluation of Light Levels in Ophthalmic Instruments and Devices.
    1. Nandakumar G. Skin biopsy in pediatric age group: Special considerations. Indian J. Paediatr. Dermatol. 2012;13:35. doi: 10.4103/2319-7250.102810.
    1. Nolano M., Provitera V., Manganelli F., Iodice R., Stancanelli A., Caporaso G., Saltalamacchia A., Califano F., Lanzillo B., Picillo M., et al. Loss of cutaneous large and small fibers in naive and l-dopa-treated PD patients. Neurology. 2017;89:776–784. doi: 10.1212/WNL.0000000000004274.
    1. Ponirakis G., Al Hamad H., Sankaranarayanan A., Khan A., Chandran M., Ramadan M., Tosino R., Gawhale P.V., Alobaidi M., AlSulaiti E., et al. Association of corneal nerve fiber measures with cognitive function in dementia. Ann. Clin. Transl. Neurol. 2019;6:689–697. doi: 10.1002/acn3.746.
    1. Erie J.C., McLaren J.W., Hodge D.O., Bourne W.M. Recovery of corneal subbasal nerve density after PRK and LASIK. Am. J. Ophthalmol. 2005;140:1059–1064. doi: 10.1016/j.ajo.2005.07.027.
    1. Bandeira F., Yusoff N.Z., Yam G.H.-F., Mehta J.S. Corneal re-innervation following refractive surgery treatments. Neural Regen. Res. 2019;14:557–565.
    1. Müller R.T., Abedi F., Cruzat A., Witkin D., Baniasadi N., Cavalcanti B.M., Jamali A., Chodosh J., Dana R., Pavan-Langston D., et al. Degeneration and Regeneration of Subbasal Corneal Nerves after Infectious Keratitis: A Longitudinal In Vivo Confocal Microscopy Study. Ophthalmology. 2015;122:2200–2209. doi: 10.1016/j.ophtha.2015.06.047.
    1. Al Rashah K., Pritchard N., Dehghani C., Ruggeri A., Guimaraes P., Russell A., Malik R.A., Efron N., Edwards K. Corneal Nerve Migration Rate in a Healthy Control Population. Optom. Vis. Sci. 2018;95:672–677. doi: 10.1097/OPX.0000000000001254.
    1. Di G., Qi X., Zhao X., Zhang S., Danielson P., Zhou Q. Corneal Epithelium-Derived Neurotrophic Factors Promote Nerve Regeneration. Investig. Ophthalmol. Vis. Sci. 2017;58:4695–4702. doi: 10.1167/iovs.16-21372.
    1. He J., Pham T.L., Kakazu A., Bazan H.E.P. Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment. Diabetes. 2017;66:2511–2520. doi: 10.2337/db17-0249.
    1. Wang Y., Zhao X., Wu X., Dai Y., Chen P., Xie L. microRNA-182 Mediates Sirt1-Induced Diabetic Corneal Nerve Regeneration. Diabetes. 2016;65:2020–2031. doi: 10.2337/db15-1283.
    1. Pan Y., Liu F., Qi X., Hu Y., Xu F., Jia H. Nerve Growth Factor Changes and Corneal Nerve Repair after Keratoplasty. Optom. Vis. Sci. 2018;95:27–31. doi: 10.1097/OPX.0000000000001158.
    1. Campero M., Baumann T.K., Bostock H., Ochoa J.L. Human cutaneous C fibres activated by cooling, heating and menthol. J. Physiol. (Lond.) 2009;587:5633–5652. doi: 10.1113/jphysiol.2009.176040.
    1. Krishnan S.T.M., Rayman G. The LDIflare: A novel test of C-fiber function demonstrates early neuropathy in type 2 diabetes. Diabetes Care. 2004;27:2930–2935. doi: 10.2337/diacare.27.12.2930.
    1. Rodrigues Júnior I.A., Silva I.C.C., Gresta L.T., Lyon S., Villarroel M.d.F., Arantes R.M.E. Degree of skin denervation and its correlation to objective thermal sensory test in leprosy patients. PLoS Negl. Trop. Dis. 2012;6:e1975. doi: 10.1371/journal.pntd.0001975.
    1. Kovács I., Luna C., Quirce S., Mizerska K., Callejo G., Riestra A., Fernández-Sánchez L., Meseguer V.M., Cuenca N., Merayo-Lloves J., et al. Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease. Pain. 2016;157:399–417. doi: 10.1097/j.pain.0000000000000455.
    1. Kurose M., Meng I.D. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells. J. Neurophysiol. 2013;110:495–504. doi: 10.1152/jn.00222.2013.
    1. Tanelian D.L., Monroe S. Altered thermal responsiveness during regeneration of corneal cold fibers. J. Neurophysiol. 1995;73:1568–1573. doi: 10.1152/jn.1995.73.4.1568.
    1. Wöpking S., Scherens A., Haussleiter I.S., Richter H., Schüning J., Klauenberg S., Maier C. Significant difference between three observers in the assessment of intraepidermal nerve fiber density in skin biopsy. BMC Neurol. 2009;9:13. doi: 10.1186/1471-2377-9-13.
    1. Al-Fahdawi S., Qahwaji R., Al-Waisy A.S., Ipson S., Malik R.A., Brahma A., Chen X. A fully automatic nerve segmentation and morphometric parameter quantification system for early diagnosis of diabetic neuropathy in corneal images. Comput. Methods Programs Biomed. 2016;135:151–166. doi: 10.1016/j.cmpb.2016.07.032.
    1. Ferreira A., Morgado A.M., Silva J.S. A method for corneal nerves automatic segmentation and morphometric analysis. Comput. Methods Programs Biomed. 2012;107:53–60. doi: 10.1016/j.cmpb.2011.09.014.
    1. Lovblom L.E., Halpern E.M., Wu T., Kelly D., Ahmed A., Boulet G., Orszag A., Ng E., Ngo M., Bril V., et al. In vivo corneal confocal microscopy and prediction of future-incident neuropathy in type 1 diabetes: A preliminary longitudinal analysis. Can. J. Diabetes. 2015;39:390–397. doi: 10.1016/j.jcjd.2015.02.006.
    1. Ahmed A., Bril V., Orszag A., Paulson J., Yeung E., Ngo M., Orlov S., Perkins B.A. Detection of diabetic sensorimotor polyneuropathy by corneal confocal microscopy in type 1 diabetes: A concurrent validity study. Diabetes Care. 2012;35:821–828. doi: 10.2337/dc11-1396.
    1. Ambrósio R., Tervo T., Wilson S.E. LASIK-associated dry eye and neurotrophic epitheliopathy: Pathophysiology and strategies for prevention and treatment. J. Refract. Surg. 2008;24:396–407. doi: 10.3928/1081597X-20080401-14.
    1. Patel D.V., McGhee C.N.J. In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: A review. Br. J. Ophthalmol. 2009;93:853–860. doi: 10.1136/bjo.2008.150615.
    1. Hsieh C.-H., Jeng S.-F., Lu T.-H., Chen Y.-C., Hsieh M.-W., Chen S.-S. Loss of small fibers in entrapment neuropathy and their regeneration after surgical decompression in a rat model. J. Neurotrauma. 2007;24:1658–1666. doi: 10.1089/neu.2007.0279.

Source: PubMed

Подписаться