Switching handedness: fMRI study of hand motor control in right-handers, left-handers and converted left-handers

Anna Grabowska, Malgorzata Gut, Marek Binder, Lars Forsberg, Krystyna Rymarczyk, Andrzej Urbanik, Anna Grabowska, Malgorzata Gut, Marek Binder, Lars Forsberg, Krystyna Rymarczyk, Andrzej Urbanik

Abstract

The purpose of this study was to investigate the differences in the brain organization of motor control in left- and right-handers and to study whether early left-to-right handwriting switch changes the cortical representation of finger movements in the left and right hemispheres. Echo-planar MR imaging was performed in 52 subjects: consistent right-handers (RH), consistent left-handers (LH), and subjects who had been forced at an early age to switch their left-hand preferences toward the right side. The scanning was performed during simple (flexion/extension of the index finger) and complex (successive finger-thumb opposition) tasks. Subjects performed the tasks using both the preferred and non-preferred hand. In right-handers, there was a general predominance of left-hemisphere activation relative to right hemisphere activation. In lefthanders this pattern was reversed. The switched subjects showed no such volumetric asymmetry. Increasing levels of complexity of motor activity resulted in an increase in the volume of consistently activated areas and the involvement of the ipsilateral in addition to contralateral activations. In both right- and left-handers, movements of the preferred hand activated mainly the contralateral hemisphere, whereas movements of the non-preferred hand resulted in a more balanced pattern of activation in the two hemispheres, indicating greater involvement of the ipsilateral activations. Overall, this study shows that in both left- and right-handed subjects, the preferred hand is controlled mainly by the hemisphere contralateral to that hand, whereas the non-preferred hand is controlled by both hemispheres. The switched individuals share features of both lefthanders and right-handers regarding their motor control architectures.

Source: PubMed

Подписаться