Individual Differences and Hemispheric Asymmetries for Language and Spatial Attention

Louise O'Regan, Deborah J Serrien, Louise O'Regan, Deborah J Serrien

Abstract

Language and spatial processing are cognitive functions that are asymmetrically distributed across both cerebral hemispheres. In the present study, we compare left- and right-handers on word comprehension using a divided visual field paradigm and spatial attention using a landmark task. We investigate hemispheric asymmetries by assessing the participants' behavioral metrics; response accuracy, reaction time and their laterality index. The data showed that right-handers benefitted more from left-hemispheric lateralization for language comprehension and right-hemispheric lateralization for spatial attention than left-handers. Furthermore, left-handers demonstrated a more variable distribution across both hemispheres, supporting a less focal profile of functional brain organization. Taken together, the results underline that handedness distinctively modulates hemispheric processing and behavioral performance during verbal and nonverbal tasks. In particular, typical lateralization is most prevalent for right-handers whereas atypical lateralization is more evident for left-handers. These insights contribute to the understanding of individual variation of brain asymmetries and the mechanisms related to changes in cerebral dominance.

Keywords: handedness; landmark task; laterality; visual half-field; word comprehension.

Figures

Figure 1
Figure 1
Trial sequence and timing of the language task. After presentation of the fixation cross, two words were shown bilaterally, with an arrowhead pointing to the target word. The words were subsequently replaced by backward masks followed by an intertrial interval.
Figure 2
Figure 2
Trial sequence and timing of the landmark task. After presentation of the fixation cross, a pre-marked horizontal line was shown for 150 ms. Following a delay, the line was backward-masked with a series of criss-crossed lines followed by an intertrial interval.
Figure 3
Figure 3
Handedness scores of the manipulation actions and gestures for the left- and right-handers. Both handedness groups show increased use of the non-dominant hand for gestures than for manipulation actions.
Figure 4
Figure 4
Scatter plot of the LITIM as a function of the participants’ handedness scores for the language task, with the left- and right-handers demonstrating distinct performance biases.
Figure 5
Figure 5
Response accuracy of left- and right-sided marked trials for the left- and right-handers. The right-handers showed higher response accuracy for the trials with marker in the left than right visual field whereas the left-handers did not show differences between both sides.
Figure 6
Figure 6
Scatter plot of the LIACC as a function of the participants’ handedness scores for the landmark task, with the left- and right-handers revealing distinctive performance tendencies.
Figure 7
Figure 7
Scatter plot of the LITIM between the language and landmark tasks, illustrating typical and atypical lateralization patterns for the left- and right-handers.

References

    1. Andresen D. R., Marsolek C. J. (2005). Does a causal relation exist between the functional hemispheric asymmetries of visual processing subsystems? Brain Cogn. 59, 135–144. 10.1016/j.bandc.2005.05.010
    1. Annett M. (2002). Handedness and Brain Asymmetry: The Right Shift Theory. Hove: Psychology Press, Taylor and Francis.
    1. Badzakova-Trajkov G., Häberling I. S., Roberts R. P., Corballis M. C. (2010). Cerebral asymmetries: complementary and independent processes. PLoS One 5:e9682. 10.1371/journal.pone.0009682
    1. Bareham C. A., Bekinschtein T. A., Scott S. K., Manly T. (2015). Does left-handedness confer resistance to spatial bias? Sci. Rep. 5:9162. 10.1038/srep09162
    1. Benwell C. S., Harvey M., Gardner S., Thut G. (2013). Stimulus-and state-dependence of systematic bias in spatial attention: additive effects of stimulus-size and time-on-task. Cortex 49, 827–836. 10.1016/j.cortex.2011.12.007
    1. Benwell C. S., Harvey M., Thut G. (2014). On the neural origin of pseudoneglect: EEG-correlates of shifts in line bisection performance with manipulation of line length. Neuroimage 86, 370–380. 10.1016/j.neuroimage.2013.10.014
    1. Binder J. R., Westbury C. F., McKiernan K. A., Possing E. T., Medler D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. J. Cogn. Neurosci. 17, 905–917. 10.1162/0898929054021102
    1. Boorman E. D., O’Shea J., Sebastian C., Rushworth M. F., Johansen-Berg H. (2007). Individual differences in white-matter microstructure reflect variation in functional connectivity during choice. Curr. Biol. 17, 1426–1431. 10.1016/j.cub.2007.07.040
    1. Boulenger V., Roy A. C., Paulignan Y., Deprez V., Jeannerod M., Nazir T. A. (2006). Cross-talk between language processes and overt motor behavior in the first 200 msec of processing. J. Cogn. Neurosci. 18, 1607–1615. 10.1162/jocn.2006.18.10.1607
    1. Bowers D., Heilman K. M. (1980). Pseudoneglect: effects of hemispace on a tactile line bisection task. Neuropsychologia 18, 491–498. 10.1016/0028-3932(80)90151-7
    1. Broca P. (1861). Sur le principe des localisations cérébrales. Bull. Soc. Anthropol. 2, 190–204.
    1. Brodie E. E., Dunn E. M. (2005). Visual line bisection in sinistrals and dextrals as a function of hemispace, hand scan direction. Brain Cogn. 58, 149–156. 10.1016/j.bandc.2004.09.019
    1. Brodie E. E., Pettigrew L. E. L. (1996). Is left always right? Directional deviations in visual line bisection as a function of hand initial scanning direction. Neuropsychologia 34, 467–470. 10.1016/0028-3932(95)00130-1
    1. Bryden M. P., Hécaen H., DeAgostini M. (1983). Patterns of cerebral organization. Brain Lang. 20, 249–262. 10.1016/0093-934x(83)90044-5
    1. Cai Q., Van der Haegen L., Brysbaert M. (2013). Complementary hemispheric specialization for language production and visuospatial attention. Proc. Natl. Acad. Sci. U S A 110, E322–E330. 10.1073/pnas.1212956110
    1. Cavézian C., Valadao D., Hurwitz M., Saoud M., Danckert J. (2012). Finding centre: ocular and fMRI investigations of bisection and landmark task performance. Brain Res. 1437, 89–103. 10.1016/j.brainres.2011.12.002
    1. Chechlacz M., Gillebert C. R., Vangkilde S. A., Petersen A., Humphreys G. W. (2015). Structural variability within frontoparietal networks and individual differences in attentional functions: an approach using the theory of visual attention. J. Neurosci. 35, 10647–10658. 10.1523/JNEUROSCI.0210-15.2015
    1. Cherbuin N., Brinkman C. (2006). Hemispheric interactions are different in left-handed individuals. Neuropsychology 20, 700–707. 10.1037/0894-4105.20.6.700
    1. Ciçek M., Deouell L. Y., Knight R. T. (2009). Brain activity during landmark and line bisection tasks. Front. Hum. Neurosci. 3:7. 10.3389/neuro.09.007.2009
    1. Corballis M. C. (1989). Laterality and human evolution. Psychol. Rev. 96, 492–505. 10.1037/0033-295X.96.3.492
    1. Corbetta M., Shulman G. L. (2011). Spatial neglect and attention networks. Annu. Rev. Neurosci. 34, 569–599. 10.1146/annurev-neuro-061010-113731
    1. Coren S., Porac C. (1977). Fifty centuries of right-handedness: the historical record. Science 198, 631–632. 10.1126/science.335510
    1. Dreyer F. R., Frey D Arana S., von Saldern S., Picht T., Vajkoczy P., Pulvermüller F. (2015). Is the motor system necessary for processing action and abstract emotion words? Evidence from focal brain lesions. Front. Psychol. 6:1661. 10.3389/fpsyg.2015.01661
    1. Duffau H., Leroy M., Gatignol P. (2008). Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers. Neuropsychologia 46, 3197–31209. 10.1016/j.neuropsychologia.2008.07.017
    1. Durnford M., Kimura D. (1971). Right hemisphere specialization for depth perception reflected in visual field differences. Nature 231, 394–395. 10.1038/231394a0
    1. Flöel A., Jansen A., Deppe M., Kanowski M., Konrad C., Sommer J., et al. . (2005). Atypical hemispheric dominance for attention: functional MRI topography. J. Cereb. Blood Flow Metab. 25, 1197–1208. 10.1038/sj.jcbfm.9600114
    1. Foundas A. L., Eure K. F., Luevano L. F., Weinberger D. R. (1998). MRI asymmetries of Broca’s area: the pars triangularis and pars opercularis. Brain Lang. 64, 282–296. 10.1006/brln.1998.1974
    1. Ghirlanda S., Vallortigara G. (2004). The evolution of brain lateralization: a game-theoretical analysis of population structure. Proc. Biol. Sci. 271, 853–857. 10.1098/rspb.2003.2669
    1. Godfrey H. K., Grimshaw G. M. (2016). Emotional language is all right: emotional prosody reduces hemispheric asymmetry for linguistic processing. Laterality 21, 568–584. 10.1080/1357650x.2015.1096940
    1. Groen M. A., Whitehouse A. J., Badcock N. A., Bishop D. V. (2012). Does cerebral lateralization develop? A study using functional transcranial Doppler ultrasound assessing lateralization for language production and visuospatial memory. Brain Behav. 2, 256–269. 10.1002/brb3.56
    1. Hauk O., Johnsrude I., Pulvermüller F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron 41, 301–307. 10.1016/s0896-6273(03)00838-9
    1. Hauk O., Pulvermüller F. (2004). Neurophysiological distinction of action words in the fronto-central cortex. Hum. Brain Mapp. 21, 191–201. 10.1002/hbm.10157
    1. Heber I. A., Siebertz S., Wolter M., Kuhlen T., Fimm B. (2010). Horizontal and vertical pseudoneglect in peri- and extrapersonal space. Brain Cogn. 73, 160–166. 10.1016/j.bandc.2010.04.006
    1. Hécaen H., Sauguet J. (1971). Cerebral dominance in left-handed subjects. Cortex 7, 19–48. 10.1016/s0010-9452(71)80020-5
    1. Hunter Z. R., Brysbaert M. (2008). Visual half-field experiments are a good measure of cerebral language dominance if used properly: evidence from fMRI. Neuropsychologia 46, 316–325. 10.1016/j.neuropsychologia.2007.07.007
    1. Jewell G., McCourt M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38, 93–110. 10.1016/s0028-3932(99)00045-7
    1. Josse G., Tzourio-Mazoyer N. (2004). Hemispheric specialization for language. Brain Res. Rev. 44, 1–12. 10.1016/j.brainresrev.2003.10.001
    1. Kinsbourne M. (1993). Integrated cortical field model of consciousness. Ciba Found. Symp. 174, 43–50.
    1. Klöppel S., van Eimeren T., Glauche V., Vongerichten A., Münchau A., Frackowiak R. S., et al. . (2007). The effect of handedness on cortical motor activation during simple bilateral movements. Neuroimage 34, 274–280. 10.1016/j.neuroimage.2006.08.038
    1. Knecht S., Dräger B., Deppe M., Bobe L., Lohmann H., Flöel A., et al. . (2000). Handedness and hemispheric language dominance in healthy humans. Brain 12, 2512–2518. 10.1093/brain/123.12.2512
    1. Li M., Chen H., Wang J., Liu F., Wang Y., Lu F., et al. . (2015). Increased cortical thickness and altered functional connectivity of the right superior temporal gyrus in left-handers. Neuropsychologia 67, 27–34. 10.1016/j.neuropsychologia.2014.11.033
    1. Liu H., Stufflebeam S. M., Sepulcre J., Hedden T., Buckner R. L. (2009). Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proc. Natl. Acad. Sci. U S A 106, 20499–20503. 10.1073/pnas.0908073106
    1. Marshall J. C., Fink G. R. (2001). Spatial cognition: where we were and where we are. Neuroimage 14, S2–S7. 10.1006/nimg.2001.0834
    1. Martin K., Jacobs S., Frey S. H. (2011). Handedness-dependent and -independent cerebral asymmetries in the anterior intraparietal sulcus and ventral premotor cortex during grasp planning. Neuroimage 57, 502–512. 10.1016/j.neuroimage.2011.04.036
    1. Mazoyer B., Zago L., Jobard G., Crivello F., Joliot M., Perchey G., et al. . (2014). Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS One 9:e101165. 10.1371/journal.pone.0101165
    1. McCourt M. E., Jewell G. (1999). Visuospatial attention in line bisection: stimulus modulation of pseudoneglect. Neuropsychologia 37, 843–855. 10.1016/s0028-3932(98)00140-7
    1. Moseley R., Carota F., Hauk O., Mohr B., Pulvermüller F. (2012). A role for the motor system in binding abstract emotional meaning. Cereb. Cortex 22, 1634–1647. 10.1093/cercor/bhr238
    1. Nalçaci E., Kalaycioğlu C., Çiçek M., Genç Y. (2001). The relationship between handedness and fine motor performance. Cortex 37, 493–500. 10.1016/s0010-9452(08)70589-6
    1. Peirce J. W. (2007). PsychoPy-psychophysics software in Python. J. Neurosci. Methods 162, 8–13. 10.1016/j.jneumeth.2006.11.017
    1. Perelle I. B., Ehrman L. (2005). On the other hand. Behav. Genet. 35, 343–350. 10.1007/s10519-005-3226-z
    1. Perlaki G., Horvath R., Orsi G., Aradi M., Auer T., Varga E., et al. . (2013). White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis. Brain Cogn. 82, 319–328. 10.1016/j.bandc.2013.05.005
    1. Perri R. L., Berchicci M., Spinelli D., Di Russo F. (2014). Individual differences in response speed and accuracy are associated to specific brain activities of two interacting systems. Front. Behav. Neurosci. 8:251. 10.3389/fnbeh.2014.00251
    1. Pool E. M., Rehme A. K., Fink G. R., Eickhoff S. B., Grefkens C. (2014). Handedness and effective connectivity of the motor system. Neuroimage 99, 451–460. 10.1016/j.neuroimage.2014.05.048
    1. Postma A., Huntjens R. J., Meuwissen M., Laeng B. (2006). The time course of spatial memory processing in the two hemispheres. Neuropsychologia 44, 1914–1918. 10.1016/j.neuropsychologia.2006.02.001
    1. Powell J. L., Kemp G. J., García-Finaña M. (2012). Association between language and spatial laterality and cognitive ability: an fMRI study. Neuroimage 59, 1818–1829. 10.1016/j.neuroimage.2011.08.040
    1. Price C. J. (2000). The anatomy of language: contributions from functional neuroimaging. J. Anat. 197, 335–359. 10.1046/j.1469-7580.2000.19730335.x
    1. Prieur J., Barbu S., Blois-Heulin C. (2017). Assessment and analysis of human laterality for manipulation and communication using the Rennes laterality questionnaire. R. Soc. Open Sci. 4:170035. 10.1098/rsos.170035
    1. Pujol J., Deus J., Losilla J. M., Capdevila A. (1999). Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology 52, 1038–1043. 10.1212/wnl.52.5.1038
    1. Reid C. S., Serrien D. J. (2012). Handedness and the excitability of cortical inhibitory circuits. Behav. Brain Res. 230, 144–148. 10.1016/j.bbr.2012.02.008
    1. Roberts R. E., Anderson E. J., Husain M. (2010). Expert cognitive control and individual differences associated with frontal and parietal white matter microstructure. J. Neurosci. 30, 17063–17067. 10.1523/JNEUROSCI.4879-10.2010
    1. Scarisbrick D. J., Tweedy J. R., Kuslansky G. (1987). Hand preference and performance effects on line bisection. Neuropsychologia 25, 695–699. 10.1016/0028-3932(87)90061-3
    1. Serrien D. J., Ivry R. B., Swinnen S. P. (2006). Dynamics of hemispheric specialization and integration in the context of motor control. Nat. Rev. Neurosci. 7, 160–166. 10.1038/nrn1849
    1. Serrien D. J., Sovijärvi-Spapé M. M. (2013). Cognitive control of response inhibition and switching: hemispheric lateralization and hand preference. Brain Cogn. 82, 283–290. 10.1016/j.bandc.2013.04.013
    1. Serrien D. J., Sovijärvi-Spapé M. M. (2016). Manual dexterity: functional lateralisation patterns and motor efficiency. Brain Cogn. 108, 42–46. 10.1016/j.bandc.2016.07.005
    1. Serrien D. J., Sovijärvi-Spapé M. M., Farnsworth B. (2012). Bimanual control processes and the role of handedness. Neuropsychology 26, 802–807. 10.1037/a0030154
    1. Seydell-Greenwald A., Greenberg A. S., Rauschecker J. P. (2014). Are you listening? Brain activation associated with sustained nonspatial auditory attention in the presence and absence of stimulation. Hum. Brain Mapp. 35, 2233–2252. 10.1002/hbm.22323
    1. Siman-Tov T., Mendelsohn A., Schonberg T., Avidan G., Podlipsky I., Pessoa L., et al. . (2007). Bihemispheric leftward bias in a visuospatial attention-related network. J. Neurosci. 27, 11271–11278. 10.1523/JNEUROSCI.0599-07.2007
    1. Sperber C., Karnath H. O. (2016). Diagnostic validity of line bisection in the acute phase of stroke. Neuropsychologia 82, 200–204. 10.1016/j.neuropsychologia.2016.01.026
    1. Springer J. A., Binder J. R., Hammeke T. A., Swanson S. J., Frost J. A., Bellgowan P. S., et al. . (1999). Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain 122, 2033–2046. 10.1093/brain/122.11.2033
    1. Suchan J., Rorden C., Karnath H. O. (2012). Neglect severity after left and right brain damage. Neuropsychologia 50, 1136–1141. 10.1016/j.neuropsychologia.2011.12.018
    1. Szaflarski J. P., Binder J. R., Possing E. T., McKiernan K. A., Ward B. D., Hammeke T. A. (2002). Language lateralization in left-handed and ambidextrous people fMRI data. Neurology 59, 238–244. 10.1212/wnl.59.2.238
    1. Thiebaut de Schotten M., Dell’Acqua F., Forkel S. J., Simmons A., Vergani F., Murphy D. G., et al. . (2011). A lateralized brain network for visuospatial attention. Nat. Neurosci. 14, 1245–1246. 10.1038/nn.2905
    1. Tussis L., Sollmann N., Boeckh-Behrens T., Meyer B., Krieg S. M. (2016). Language function distribution in left-handers: a navigated transcranial magnetic stimulation study. Neuropsychologia 82, 65–73. 10.1016/j.neuropsychologia.2016.01.010
    1. Tzourio N., Crivello F., Mellet E., Nkanga-Ngila B., Mazoyer B. (1998). Functional anatomy of dominance for speech comprehension in left handers vs. right handers. Neuroimage 8, 1–16. 10.1006/nimg.1998.0343
    1. Vallortigara G., Rogers L. J. (2005). Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 28, 575–589. 10.1017/s0140525x05000105
    1. van Ede F., de Lange F. P., Maris E. (2012). Attentional cues affect accuracy and reaction time via different cognitive and neural processes. J. Neurosci. 32, 10408–10412. 10.1523/JNEUROSCI.1337-12.2012
    1. Vogel J. J., Bowers C. A., Vogel D. S. (2003). Cerebral lateralization of spatial abilities: a meta-analysis. Brain Cogn. 52, 197–204. 10.1016/s0278-2626(03)00056-3
    1. Wernicke C. (1874). Der Aphasische Symptomencomplex: Eine Psychologische Studie auf Anatomischer Basis. Breslau: Cohn & Weigert.
    1. Wilkinson D. T., Halligan P. W. (2002). The effects of stimulus symmetry on landmark judgments in left and right visual fields. Neuropsychologia 40, 1045–1058. 10.1016/s0028-3932(01)00142-7
    1. Zago L., Petit L., Mellet E., Jobard G., Crivello F., Joliot M., et al. . (2016). The association between hemispheric specialization for language production and for spatial attention depends on left-hand preference strength. Neuropsychologia 93, 394–406. 10.1016/j.neuropsychologia.2015.11.018

Source: PubMed

Подписаться