Effects of unfermented and fermented whole grain rye crisp breads served as part of a standardized breakfast, on appetite and postprandial glucose and insulin responses: a randomized cross-over trial

Daniel P Johansson, Isabella Lee, Ulf Risérus, Maud Langton, Rikard Landberg, Daniel P Johansson, Isabella Lee, Ulf Risérus, Maud Langton, Rikard Landberg

Abstract

Background: Whole grain rye products have been shown to increase satiety and elicit lower postprandial insulin response without a corresponding change in glucose response compared with soft refined wheat bread. The underlying mechanisms for these effects have not been fully determined The primary aim of the study was to investigate if whole grain rye crisp bread compared to refined wheat crisp bread, elected beneficial effects on appetite and postprandial insulin response, similarly as for other rye products.

Methods: In a randomized cross-over trial, 23 healthy volunteers, aged 27-70 years, BMI 18-31.4 kg/m2, were served a standardized breakfast with unfermented whole grain rye crisp bread (uRCB), fermented whole grain rye crisp bread (RCB) or refined wheat crisp bread (WCB), Appetite was measured using a visual analogue scale (VAS) until 4 h after breakfast. Postprandial glucose and insulin were measured at 0-230 min. Breads were chemically characterized including macronutrients, energy, dietary fiber components, and amino acid composition, and microstructure was characterized with light microscopy.

Results: Reported fullness was 16% higher (P<0.001), and hunger 11% and 12% lower (P<0.05) after ingestion of uRCB and RCB, respectively, compared with WCB. Postprandial glucose response did not differ significantly between treatments. Postprandial insulin was 10% lower (P<0.007) between 0-120 min but not significantly lower between 0-230 min for RCB compared with WCB. uRCB induced 13% (P<0.002) and 17% (P<0.001) lower postprandial insulin response between 0-230 min compared with RCB and WCB respectively.

Conclusion: Whole grain rye crisp bread induces higher satiety and lower insulin response compared with refined wheat crisp bread. Microstructural characteristics, dietary fiber content and composition are probable contributors to the increased satiety after ingestion of rye crisp breads. Higher insulin secretion after ingestion of RCB and WCB compared with uRCB may be due to differences in fiber content and composition, and higher availability of insulinogenic branched chain amino acids.

Trial registration: ClinicalTrials.gov NCT02011217.

Conflict of interest statement

Competing Interests: DPJ has read the journal's policy and the authors of this manuscript have the following competing interests: RL holds a research grant from Barilla for the financing of the current study. RL did not get salary or any other financial compensation for conducting the present study or for any other purposes. No other financial competing interests exist.

Figures

Fig 1. Flowchart of the study progress.
Fig 1. Flowchart of the study progress.
Fig 2. Subjective hunger.
Fig 2. Subjective hunger.
Left: Subjective hunger reported by n = 23 participants. Values are means. A statistically significant difference between treatments was found (P = 0.0043). Right: AUC for subjective hunger reported by n = 23 participants. A statistically significant difference between treatments was found (P = 0.0419). Values are adjusted least square means (LSM) ± standard errors (SE). Differences between treatments are given as percentage difference between the LSM values for AUC of the treatments. P

Fig 3. Subjective fullness.

Left: Subjective fullness…

Fig 3. Subjective fullness.

Left: Subjective fullness reported by n = 23 participants. Values are…

Fig 3. Subjective fullness.
Left: Subjective fullness reported by n = 23 participants. Values are means. A statistically significant difference between treatments was found (P

Fig 4. Subjective desire to eat.

Left:…

Fig 4. Subjective desire to eat.

Left: Subjective desire to eat reported by n =…

Fig 4. Subjective desire to eat.
Left: Subjective desire to eat reported by n = 23 participants. Values are means. A statistically significant difference between treatments was found (P

Fig 5. Plasma glucose profile and AUC.

Fig 5. Plasma glucose profile and AUC.

Left: Plasma glucose concentration- time profile in n…

Fig 5. Plasma glucose profile and AUC.
Left: Plasma glucose concentration- time profile in n = 23 participants. Values are means. No statistically significant effect attributed to breakfast treatment (P = 0.60) was obtained. Right: Differences in total AUC0–230 min and AUC0-120 between breakfast treatments. Values are adjusted least square means (LSM) ± standard errors (SE).

Fig 6. Plasma insulin profile and AUC.

Fig 6. Plasma insulin profile and AUC.

Left: Plasma insulin concentration- time profile in n…

Fig 6. Plasma insulin profile and AUC.
Left: Plasma insulin concentration- time profile in n = 23 participants. Values are means. A statistically significant interaction between treatment x time was detected (P0–230 min and AUC0-120 between breakfast treatments. Values are adjusted least square means (LSM) ± standard errors (SE). Differences between treatments are given as percentage difference between the LSM values for AUC of the treatments. P<0.05 was considered significant.

Fig 7. Micrographs showing the microstructure at…

Fig 7. Micrographs showing the microstructure at the center of the crisp bread.

(A) unfermented…

Fig 7. Micrographs showing the microstructure at the center of the crisp bread.
(A) unfermented whole grain rye crisp bread (uRCB), (B) yeast-fermented whole grain rye crisp bread (RCB), and (C) yeast-fermented refined wheat crisp bread (WCB). Protein is colored yellow (a), amylopectin-rich areas purple (b), and amylose blue (c). Fat can be seen in WCB as brown aggregates (d) and yeast cells are present in WCB and RCB (e). Aleurone layers can be seen in uRCB and RCB (f).
All figures (7)
Similar articles
Cited by
References
    1. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 2011;378: 804–814. 10.1016/S0140-6736(11)60813-1 - DOI - PubMed
    1. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N Engl J Med 2011;364: 2392–2404. 10.1056/NEJMoa1014296 - DOI - PMC - PubMed
    1. Wirfält E, Drake I, Wallström P. What do review papers conclude about food and dietary patterns? Food Nutr Res 2013;57 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3589439&tool=p.... - PMC - PubMed
    1. Hetherington MM, Cunningham K, Dye L, Gibson EL, Gregersen NT, Halford JCG, et al. Potential benefits of satiety to the consumer: scientific considerations. Nutr Res Rev 2013;26: 22–38. 10.1017/S0954422413000012 - DOI - PubMed
    1. Blundell J, de Graaf C, Hulshof T, Jebb S, Livingstone B, Lluch A, et al. Appetite control: methodological aspects of the evaluation of foods. Obes Rev 2010;11: 251–270. 10.1111/j.1467-789X.2010.00714.x - DOI - PMC - PubMed
Show all 69 references
Publication types
MeSH terms
Associated data
Grant support
RL holds a research grant from Barilla for the financing of the current study (http://www.barillagroup.com/). RL did not get salary or any other financial compensation for conducting the present study or for any other purposes. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig 3. Subjective fullness.
Fig 3. Subjective fullness.
Left: Subjective fullness reported by n = 23 participants. Values are means. A statistically significant difference between treatments was found (P

Fig 4. Subjective desire to eat.

Left:…

Fig 4. Subjective desire to eat.

Left: Subjective desire to eat reported by n =…

Fig 4. Subjective desire to eat.
Left: Subjective desire to eat reported by n = 23 participants. Values are means. A statistically significant difference between treatments was found (P

Fig 5. Plasma glucose profile and AUC.

Fig 5. Plasma glucose profile and AUC.

Left: Plasma glucose concentration- time profile in n…

Fig 5. Plasma glucose profile and AUC.
Left: Plasma glucose concentration- time profile in n = 23 participants. Values are means. No statistically significant effect attributed to breakfast treatment (P = 0.60) was obtained. Right: Differences in total AUC0–230 min and AUC0-120 between breakfast treatments. Values are adjusted least square means (LSM) ± standard errors (SE).

Fig 6. Plasma insulin profile and AUC.

Fig 6. Plasma insulin profile and AUC.

Left: Plasma insulin concentration- time profile in n…

Fig 6. Plasma insulin profile and AUC.
Left: Plasma insulin concentration- time profile in n = 23 participants. Values are means. A statistically significant interaction between treatment x time was detected (P0–230 min and AUC0-120 between breakfast treatments. Values are adjusted least square means (LSM) ± standard errors (SE). Differences between treatments are given as percentage difference between the LSM values for AUC of the treatments. P<0.05 was considered significant.

Fig 7. Micrographs showing the microstructure at…

Fig 7. Micrographs showing the microstructure at the center of the crisp bread.

(A) unfermented…

Fig 7. Micrographs showing the microstructure at the center of the crisp bread.
(A) unfermented whole grain rye crisp bread (uRCB), (B) yeast-fermented whole grain rye crisp bread (RCB), and (C) yeast-fermented refined wheat crisp bread (WCB). Protein is colored yellow (a), amylopectin-rich areas purple (b), and amylose blue (c). Fat can be seen in WCB as brown aggregates (d) and yeast cells are present in WCB and RCB (e). Aleurone layers can be seen in uRCB and RCB (f).
All figures (7)
Similar articles
Cited by
References
    1. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 2011;378: 804–814. 10.1016/S0140-6736(11)60813-1 - DOI - PubMed
    1. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N Engl J Med 2011;364: 2392–2404. 10.1056/NEJMoa1014296 - DOI - PMC - PubMed
    1. Wirfält E, Drake I, Wallström P. What do review papers conclude about food and dietary patterns? Food Nutr Res 2013;57 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3589439&tool=p.... - PMC - PubMed
    1. Hetherington MM, Cunningham K, Dye L, Gibson EL, Gregersen NT, Halford JCG, et al. Potential benefits of satiety to the consumer: scientific considerations. Nutr Res Rev 2013;26: 22–38. 10.1017/S0954422413000012 - DOI - PubMed
    1. Blundell J, de Graaf C, Hulshof T, Jebb S, Livingstone B, Lluch A, et al. Appetite control: methodological aspects of the evaluation of foods. Obes Rev 2010;11: 251–270. 10.1111/j.1467-789X.2010.00714.x - DOI - PMC - PubMed
Show all 69 references
Publication types
MeSH terms
Associated data
Grant support
RL holds a research grant from Barilla for the financing of the current study (http://www.barillagroup.com/). RL did not get salary or any other financial compensation for conducting the present study or for any other purposes. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig 4. Subjective desire to eat.
Fig 4. Subjective desire to eat.
Left: Subjective desire to eat reported by n = 23 participants. Values are means. A statistically significant difference between treatments was found (P

Fig 5. Plasma glucose profile and AUC.

Fig 5. Plasma glucose profile and AUC.

Left: Plasma glucose concentration- time profile in n…

Fig 5. Plasma glucose profile and AUC.
Left: Plasma glucose concentration- time profile in n = 23 participants. Values are means. No statistically significant effect attributed to breakfast treatment (P = 0.60) was obtained. Right: Differences in total AUC0–230 min and AUC0-120 between breakfast treatments. Values are adjusted least square means (LSM) ± standard errors (SE).

Fig 6. Plasma insulin profile and AUC.

Fig 6. Plasma insulin profile and AUC.

Left: Plasma insulin concentration- time profile in n…

Fig 6. Plasma insulin profile and AUC.
Left: Plasma insulin concentration- time profile in n = 23 participants. Values are means. A statistically significant interaction between treatment x time was detected (P0–230 min and AUC0-120 between breakfast treatments. Values are adjusted least square means (LSM) ± standard errors (SE). Differences between treatments are given as percentage difference between the LSM values for AUC of the treatments. P<0.05 was considered significant.

Fig 7. Micrographs showing the microstructure at…

Fig 7. Micrographs showing the microstructure at the center of the crisp bread.

(A) unfermented…

Fig 7. Micrographs showing the microstructure at the center of the crisp bread.
(A) unfermented whole grain rye crisp bread (uRCB), (B) yeast-fermented whole grain rye crisp bread (RCB), and (C) yeast-fermented refined wheat crisp bread (WCB). Protein is colored yellow (a), amylopectin-rich areas purple (b), and amylose blue (c). Fat can be seen in WCB as brown aggregates (d) and yeast cells are present in WCB and RCB (e). Aleurone layers can be seen in uRCB and RCB (f).
All figures (7)
Fig 5. Plasma glucose profile and AUC.
Fig 5. Plasma glucose profile and AUC.
Left: Plasma glucose concentration- time profile in n = 23 participants. Values are means. No statistically significant effect attributed to breakfast treatment (P = 0.60) was obtained. Right: Differences in total AUC0–230 min and AUC0-120 between breakfast treatments. Values are adjusted least square means (LSM) ± standard errors (SE).
Fig 6. Plasma insulin profile and AUC.
Fig 6. Plasma insulin profile and AUC.
Left: Plasma insulin concentration- time profile in n = 23 participants. Values are means. A statistically significant interaction between treatment x time was detected (P0–230 min and AUC0-120 between breakfast treatments. Values are adjusted least square means (LSM) ± standard errors (SE). Differences between treatments are given as percentage difference between the LSM values for AUC of the treatments. P<0.05 was considered significant.
Fig 7. Micrographs showing the microstructure at…
Fig 7. Micrographs showing the microstructure at the center of the crisp bread.
(A) unfermented whole grain rye crisp bread (uRCB), (B) yeast-fermented whole grain rye crisp bread (RCB), and (C) yeast-fermented refined wheat crisp bread (WCB). Protein is colored yellow (a), amylopectin-rich areas purple (b), and amylose blue (c). Fat can be seen in WCB as brown aggregates (d) and yeast cells are present in WCB and RCB (e). Aleurone layers can be seen in uRCB and RCB (f).

References

    1. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 2011;378: 804–814. 10.1016/S0140-6736(11)60813-1
    1. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N Engl J Med 2011;364: 2392–2404. 10.1056/NEJMoa1014296
    1. Wirfält E, Drake I, Wallström P. What do review papers conclude about food and dietary patterns? Food Nutr Res 2013;57 Available: .
    1. Hetherington MM, Cunningham K, Dye L, Gibson EL, Gregersen NT, Halford JCG, et al. Potential benefits of satiety to the consumer: scientific considerations. Nutr Res Rev 2013;26: 22–38. 10.1017/S0954422413000012
    1. Blundell J, de Graaf C, Hulshof T, Jebb S, Livingstone B, Lluch A, et al. Appetite control: methodological aspects of the evaluation of foods. Obes Rev 2010;11: 251–270. 10.1111/j.1467-789X.2010.00714.x
    1. Isaksson H, Tillander I, Andersson R, Olsson J, Fredriksson H, Webb D-L, et al. Whole grain rye breakfast—sustained satiety during three weeks of regular consumption. Physiol Behav 2012;105: 877–884. 10.1016/j.physbeh.2011.10.023
    1. Isaksson H, Rakha A, Andersson R, Fredriksson H, Olsson J, Åman P. Rye kernel breakfast increases satiety in the afternoon—an effect of food structure. Nutr J 2011;10: 31 10.1186/1475-2891-10-31
    1. Isaksson H, Sundberg B, Åman P, Fredriksson H, Olsson J. Whole grain rye porridge breakfast improves satiety compared to refined wheat bread breakfast. Food Nutr Res 2008;52: 1–7.
    1. Isaksson H, Fredriksson H, Andersson R, Olsson J, Åman P. Effect of rye bread breakfasts on subjective hunger and satiety: a randomized controlled trial. Nutr J 2009;8: 39 10.1186/1475-2891-8-39
    1. Rosén LAH, Östman EM, Björck IME. Postprandial glycemia, insulinemia, and satiety responses in healthy subjects after whole grain rye bread made from different rye varieties. 1. J Agric Food Chem 2011;59: 12149–12154. 10.1021/jf2019837
    1. Rosén LAH, Silva LOB, Andersson UK, Holm C, Östman EM, Björck IME. Endosperm and whole grain rye breads are characterized by low post-prandial insulin response and a beneficial blood glucose profile. Nutr J 2009;8: 42 10.1186/1475-2891-8-42
    1. Rosén LAH, Östman EM, Björck IME. Postprandial glycemia, insulinemia, and satiety responses in healthy subjects after whole grain rye bread made from different rye varieties. 2. J Agric Food Chem 2011;59: 12149–12154. 10.1021/jf2019837
    1. Rosén LAH, Ostman EM, Björck IM. Effects of cereal breakfasts on postprandial glucose, appetite regulation and voluntary energy intake at a subsequent standardized lunch; focusing on rye products. Nutr J 2011;10: 7 10.1186/1475-2891-10-7
    1. Leinonen K, Liukkonen K, Poutanen K, Uusitupa M, Mykkänen H. Rye bread decreases postprandial insulin response but does not alter glucose response in healthy Finnish subjects. Eur J Clin Nutr 1999;53: 262–267.
    1. Juntunen KS, Laaksonen DE, Autio K, Niskanen LK, Holst JJ, Savolainen KE, et al. Structural differences between rye and wheat breads but not total fiber content may explain the lower postprandial insulin response to rye bread. Am J Clin Nutr 2003;78: 957–964.
    1. Juntunen KS, Niskanen LK, Liukkonen KH, Poutanen KS, Holst JJ, Mykkänen HM. Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects. Am J Clin Nutr 2002;75: 254–262.
    1. Hu FB, Dam RM Van, Liu S. Diet and risk of Type II diabetes: the role of types of fat and carbohydrate. Diabetolgia 2001;44: 805–817.
    1. Del Prato S, Leonetti F, Simonson DC, Sheehan P, Matsuda M, DeFronzo RA. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia 1994;37: 1025–1035.
    1. Gunnerud UJ, Heinzle C, Holst JJ, Östman EM, Björck IME. Effects of pre-meal drinks with protein and amino acids on glycemic and metabolic responses at a subsequent composite meal. PLoS One 2012;7: e44731 Available: 10.1371/journal.pone.0044731
    1. Moazzami AA, Bondia-Pons I, Hanhineva K, Juntunen K, Antl N, Poutanen K. Metabolomics reveals the metabolic shifts following an intervention with rye bread in postmenopausal women—a randomized control trial. Nutr J 2012;11: 88 10.1186/1475-2891-11-88
    1. Moazzami AA, Shrestha A, Morrison DA, Poutanen K, Mykka H. Metabolomics Reveals Differences in Postprandial Responses to Breads and Fasting Metabolic Characteristics Associated with Postprandial Insulin Demand in Postmenopausal Women 1–3. J Nutr. 2014: 10.3945/jn.113.188912
    1. Rakha A, Åman P, Andersson R. Characterisation of dietary fibre components in rye products. Food Chem 2010;119: 859–867.
    1. Katina K, Liukkonen K-H, Kaukovirta-Norja A, Adlercreutz H, Heinonen S-M, Lampi A-M, et al. Fermentation-induced changes in the nutritional value of native or germinated rye. J Cereal Sci 2007;46: 348–355.
    1. Burton P, Lightowler HJ. Influence of bread volume on glycaemic response and satiety. Br J Nutr 2007;96: 877–882.
    1. Rolls BJ, Castellanos VH, Halford JC, Kilara A, Panyam D, Pelkman CL, et al. Volume of food consumed affects satiety in men. Am J Clin Nutr 1998;67: 1170–1177.
    1. Forsberg T, Åman P, Landberg R. Effects of whole grain rye crisp bread for breakfast on appetite and energy intake in a subsequent meal: two randomised controlled trails with different amounts of test foods and breakfast energy content. Nutr J 2014;13: 26 10.1186/1475-2891-13-26
    1. Theander O, Åman P, Westerlund E, Andersson R, Pettersson D. Total dietary fiber determined as neutral sugar residues, uronic acid residues and Klason lignin (the Uppsala method): collaborative study. J AOAC Int 1995;78: 1030–1044.
    1. Mccleary BV, Codd R. Measurment of (1–3), (1–4)-beta-d-Glucan in Barley and Oats: A Streamlined Enzymic Procedure. J Sci Food Agric 1991;55: 303–312.
    1. McCleary BV, Murphy A, Mugford DC. Measurement of total fructan in foods by enzymatic/spectrophotometric method: collaborative study. J AOAC Int 2000;83: 356–364.
    1. Loosveld AA, Grobet PJ, Delcour JA. Contents and Structural Features of Water-Extractable Arabinogalactan in Wheat Flour Fractions. J Agric Food Chem 1997;45: 1998–2002.
    1. Croon L-B, Fuchs G. Fetthaltsbestämning i mjöl och mjölprodukter. Vår föda 1980;32: 425–476.
    1. Stubbs RJ, Hughes DA, Johnstone AM, Rowley E, Reid C, Elia M, et al. Review article The use of visual analogue scales to assess motivation to eat in human subjects: a review of their reliability and validity with an evaluation of new hand-held computerized systems for temporal tracking of appetite ratings. Br J Nutr 2000;84: 405–415.
    1. Stubbs RJ, Hughes DA, Johnstone AM, Rowley E, Ferris S, Elia M, et al. Description and evaluation of a Newton-based electronic appetite rating system for temporal tracking of appetite in human subjects. Physiol Behav 2001;72: 615–619.
    1. Stratton RJ, Stubbs RJ, Hughes D, King N, Blundell JE, Elia M. Comparison of the traditional paper visual analogue scale questionnaire with an Apple Newton electronic appetite rating system (EARS) in free living subjects feeding ad libitum. Eur J Clin Nutr 1998;52: 737–741
    1. Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 2000;24: 38–48.
    1. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, et al. Glycaemic index methodology. Nutr Res Rev 2005;18: 145–171. 10.1079/NRR2005100
    1. Clark MJ, Slavin JL. The effect of fiber on satiety and food intake: a systematic review. J Am Coll Nutr 2013;32: 200–211. 10.1080/07315724.2013.791194
    1. Wanders AJ, van den Borne JJGC, de Graaf C, Hulshof T, Jonathan MC, Kristensen M, et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev 2011;12: 724–739. 10.1111/j.1467-789X.2011.00895.x
    1. Wanders AJ, Jonathan MC, van den Borne JJGC, Mars M, Schols H A, Feskens EJM, et al. The effects of bulking, viscous and gel-forming dietary fibres on satiation. Br J Nutr 2013;109: 1330–1337. 10.1017/S0007114512003145
    1. Marciani L, Gowland PA, Spiller RC, Manoj P, Moore RJ, Young P, et al. Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am J Physiol Gastrointest Liver Physiol 2001;280: G1227–33.
    1. Shelat KJ, Vilaplana F, Nicholson TM, Wong KH, Gidley MJ, Gilbert RG. Diffusion and viscosity in arabinoxylan solutions: Implications for nutrition. Carbohydr Polym 2010;82: 46–53.
    1. Shelat KJ, Vilaplana F, Nicholson TM, Gidley MJ, Gilbert RG. Diffusion and rheology characteristics of barley mixed linkage β-glucan and possible implications for digestion. Carbohydr Polym 2011;86: 1732–1738.
    1. Le Gall M, Serena A, Jørgensen H, Theil PK, Bach Knudsen KE. The role of whole-wheat grain and wheat and rye ingredients on the digestion and fermentation processes in the gut—a model experiment with pigs. Br J Nutr 2009;102: 1590–1600. 10.1017/S0007114509990924
    1. Bach Knudsen KE, Serena A, Kjaer AKB, Jørgensen H, Engberg R. Rye bread enhances the production and plasma concentration of butyrate but not the plasma concentrations of glucose and insulin in pigs. J Nutr 2005;135: 1696–1704.
    1. Isaksson H, Landberg R, Sundberg B, Lundin E, Hallmans G, Zhang J-X, et al. High-fiber rye diet increases ileal excretion of energy and macronutrients compared with low-fiber wheat diet independent of meal frequency in ileostomy subjects. Food Nutr Res 2013;57 Available: .
    1. Maljaars PWJ, Peters HPF, Mela DJ, Masclee AAM. Ileal brake: a sensible food target for appetite control. A review. Physiol Behav 2008;95: 271–281. 10.1016/j.physbeh.2008.07.018
    1. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009;90: 1236–1243. 10.3945/ajcn.2009.28095
    1. Heaton KW, Marcus SN, Emmett PM, Bolton CH. Particle size of wheat, maize, and oat test meals: effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro. Am J Clin Nutr 1988;47: 675–682.
    1. Holm J, Lundquist J, Björck IME, Eliasson A-C, Asp N-G. Degree in vitro, of starch gelatinization, and metabolic response in rats. Am J Clin Nutr 1988;47: 1010–1016.
    1. Lentle RG, Janssen PWM. Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: a review. J Comp Physiol B 2008;178: 673–690. 10.1007/s00360-008-0264-x
    1. De Graaf C, Blom WAM, Smeets PAM, Stafleu A, Hendriks HFJ. Biomarkers of satiation and satiety. Am J Clin Nutr 2004;79: 946–961.
    1. Eelderink C, Moerdijk-poortvliet TCW, Wang H, Schepers M, Preston T, Boer T, et al. The Glycemic Response Does Not Reflect the In Vivo Starch Digestibility of Fiber-Rich Wheat Products in Healthy Men. J Nutr 2012;142: 258–263. 10.3945/jn.111.147884
    1. Ellis PR, Roberts FG, Low AG, Morgan LM. The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide production in the growing pig: relationship to rheological changes in jejunal digesta. Br J Nutr 1995;74: 539–556.
    1. Fabek H, Messerschmidt S, Brulport V, Goff HD. The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocoll 2014;35: 718–726.
    1. Lightowler HJ, Henry CJK. Glycemic response of mashed potato containing high-viscocity hydroxypropylmethylcellulose. Nutr Res 2009;29: 551–557. 10.1016/j.nutres.2009.06.004
    1. Östman E, Rossi E, Larsson H, Brighenti F, Björck I. Glucose and insulin responses in healthy men to barley bread with different levels of (1→3;1→4)-β-glucans; predictions using fluidity measurements of in vitro enzyme digests. J Cereal Sci 2006;43: 230–235.
    1. Christensen KL, Hedemann MS, Lærke HN, Jørgensen H, Mutt SJ, Herzig K-H, et al. Concentrated Arabinoxylan but Not Concentrated β-Glucan in Wheat Bread Has Similar E ff ects on Postprandial Insulin as Whole-Grain Rye in Porto-arterial Catheterized Pigs. J Agric Food Chem 2013;61: 7760–7768. 10.1021/jf400965j
    1. Theil PK, Jørgensen H, Serena A, Hendrickson J, Bach Knudsen KE. Products deriving from microbial fermentation are linked to insulinaemic response in pigs fed breads prepared from whole-wheat grain and wheat and rye ingredients. Br J Nutr 2011;105: 373–383. 10.1017/S0007114510003715
    1. Hartvigsen ML, Gregersen S, Lærke HN, Holst JJ, Bach Knudsen KE, Hermansen K. Effects of concentrated arabinoxylan and β-glucan compared with refined wheat and whole grain rye on glucose and appetite in subjects with the metabolic syndrome: a randomized study. Eur J Clin Nutr 2014;68: 84–90. 10.1038/ejcn.2013.236
    1. Lu ZX, Walker KZ, Muir JG, O’Dea K. Arabinoxylan fibre improves metabolic control in people with Type II diabetes. Eur J Clin Nutr 2004;58: 621–628.
    1. Nilsson U, Öste R, Jägerstad M. Cereal fructans: Hydrolysis by yeast invertase, in vitro and during fermentation. J Cereal Sci 1987;6: 53–60.
    1. Andersson R, Fransson G, Tietjen M, Åman P. Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J Agric Food Chem 2009;57: 2004–2008. 10.1021/jf801280f
    1. Rakha A, Åman P, Andersson R. How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers? Int J Mol Sci 2011;12: 3381–3393. 10.3390/ijms12053381
    1. Izydorczyk MS, Biliaderis CG. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 1995;28: 33–48.
    1. Nilsson M, Stenberg M, Frid AH, Holst JJ, Björck IME. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr 2004;80: 1246–1253.
    1. Rosenfeld MJ, Forsberg SR. Compounds for use in weight loss and appetite supression in humans. Patent (US 7507731 B2) 2009.
    1. Slavin J. Why whole grains are protective: biological mechanisms. Proc Nutr Soc 2003;62: 129–134.
    1. Bondia-Pons I, Aura A-M, Vuorela S, Kolehmainen M, Mykkänen H, et al. Rye phenolics in nutrition and health. J Cereal Sci 2009;49: 323–336.
    1. Nordlund E, Katina K, Aura A-M, Poutanen K. Changes in bran structure by bioprocessing with enzymes and yeast modifies the in vitro digestibility and fermentability of bran protein and dietary fibre complex. J Cereal Sci 2013;58: 200–208.

Source: PubMed

Подписаться