Impact of in vivo T-cell depletion on outcome of AML patients in first CR given peripheral blood stem cells and reduced-intensity conditioning allo-SCT from a HLA-identical sibling donor: a report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation

F Baron, M Labopin, D Blaise, L Lopez-Corral, S Vigouroux, C Craddock, M Attal, P Jindra, H Goker, G Socié, P Chevallier, P Browne, A Sandstedt, R F Duarte, A Nagler, M Mohty, F Baron, M Labopin, D Blaise, L Lopez-Corral, S Vigouroux, C Craddock, M Attal, P Jindra, H Goker, G Socié, P Chevallier, P Browne, A Sandstedt, R F Duarte, A Nagler, M Mohty

Abstract

The impact of in vivo T-cell depletion on transplantation outcomes in patients transplanted with reduced-intensity conditioning (RIC) remains controversial. This study assessed the outcome of 1250 adult patients with de novo AML in first CR (CR1) given PBSC from HLA-identical siblings after chemotherapy-based RIC. A total of 554 patients did not receive any form of in vivo T-cell depletion (control group), whereas antithymocyte globulin (ATG) and alemtuzumab were given in 444 and 252 patients, respectively. The incidences of grade II-IV acute GVHD were 21.4, 17.6 and 10.2% in control, ATG and alemtuzumab patients, respectively (P<0.001). In multivariate analysis, the use of ATG and the use of alemtuzumab were each associated with a lower risk of chronic GVHD (P<0.001 each), but a similar risk of relapse, and of nonrelapse mortality, and similar leukemia-free survival and OS. Further, among patients given BU-based RIC, the use of <6 mg/kg ATG did not increase the risk of relapse (hazard ratio, HR=1.1), whereas there was a suggestion for higher relapse risk in patients given 6 mg/kg ATG (HR=1.4, P=0.08). In summary, these data suggest that a certain amount of in vivo T-cell depletion can be safely used in the conditioning of AML patients in CR1 given PBSC after chemotherapy-based RIC.

References

    1. Leukemia. 2012 Dec;26(12):2462-8
    1. J Clin Oncol. 2005 Aug 1;23(22):5074-87
    1. J Clin Oncol. 2010 Jun 10;28(17):2859-67
    1. Bone Marrow Transplant. 2012 Nov;47(11):1442-7
    1. Stat Med. 1999 Mar 30;18(6):695-706
    1. J Clin Oncol. 2005 Mar 20;23(9):1993-2003
    1. Biol Blood Marrow Transplant. 2007 Jan;13(1 Suppl 1):87-97
    1. J Clin Oncol. 2010 Apr 10;28(11):1878-87
    1. Blood. 2012 Apr 5;119(14):3361-9
    1. Biol Blood Marrow Transplant. 2013 Jan;19(1):75-81
    1. Cancer. 2013 Mar 1;119(5):986-92
    1. J Clin Oncol. 2008 Feb 1;26(4):577-84
    1. Blood. 2004 Jan 1;103(1):347-52
    1. Blood. 1998 Feb 1;91(3):756-63
    1. Blood. 2012 Apr 5;119(14):3199-200
    1. Blood. 2001 Jun 1;97(11):3390-400
    1. Biol Blood Marrow Transplant. 2012 Nov;18(11):1727-33
    1. Leukemia. 2011 Mar;25(3):551-5
    1. Biol Blood Marrow Transplant. 2006 May;12(5):573-84
    1. Exp Hematol. 2008 May;36(5):535-44
    1. Leukemia. 2007 Jul;21(7):1387-94
    1. Leukemia. 2010 Nov;24(11):1867-74
    1. Bone Marrow Transplant. 2012 May;47(5):639-45
    1. Blood. 2011 Jun 9;117(23):6375-82
    1. Blood. 2005 Jun 1;105(11):4532-9
    1. Biol Blood Marrow Transplant. 2009 May;15(5):580-8
    1. N Engl J Med. 2012 Oct 18;367(16):1487-96
    1. Biol Blood Marrow Transplant. 2013 Apr;19(4):562-8
    1. Transplantation. 1974 Oct;18(4):295-304
    1. Bone Marrow Transplant. 2013 Feb;48(2):238-42
    1. Blood. 2011 Jun 23;117(25):6963-70
    1. Biol Blood Marrow Transplant. 2012 Sep;18(9):1422-9
    1. Blood. 2004 Feb 15;103(4):1548-56
    1. N Engl J Med. 2001 Jan 18;344(3):175-81
    1. Blood. 2003 Jul 15;102(2):470-6
    1. Biol Blood Marrow Transplant. 2007 Jun;13(6):724-33
    1. N Engl J Med. 1981 Jun 18;304(25):1529-33
    1. Blood. 1997 Jun 15;89(12):4531-6
    1. Curr Opin Hematol. 2007 Mar;14(2):145-51

Source: PubMed

Подписаться