Variations of high frequency parameter of heart rate variability following osteopathic manipulative treatment in healthy subjects compared to control group and sham therapy: randomized controlled trial

Nuria Ruffini, Giandomenico D'Alessandro, Nicolò Mariani, Alberto Pollastrelli, Lucia Cardinali, Francesco Cerritelli, Nuria Ruffini, Giandomenico D'Alessandro, Nicolò Mariani, Alberto Pollastrelli, Lucia Cardinali, Francesco Cerritelli

Abstract

Context: Heart Rate Variability (HRV) indicates how heart rate changes in response to inner and external stimuli. HRV is linked to health status and it is an indirect marker of the autonomic nervous system (ANS) function.

Objective: To investigate the influence of osteopathic manipulative treatment (OMT) on cardiac autonomic modulation in healthy subjects, compared with sham therapy and control group.

Methods: Sixty-six healthy subjects, both male and female, were included in the present 3-armed randomized placebo controlled within subject cross-over single blinded study. Participants were asymptomatic adults (26.7 ± 8.4 y, 51% male, BMI 18.5 ± 4.8), both smokers and non-smokers and not on medications. At enrollment subjects were randomized in three groups: A, B, C. Standardized structural evaluation followed by a patient need-based osteopathic treatment was performed in the first session of group A and in the second session of group B. Standardized evaluation followed by a protocoled sham treatment was provided in the second session of group A and in the first session of group B. No intervention was performed in the two sessions of group C, acting as a time-control. The trial was registered on clinicaltrials.gov identifier: NCT01908920.

Main outcomes measures: HRV was calculated from electrocardiography before, during and after the intervention, for a total amount time of 25 min and considering frequency domain as well as linear and non-linear methods as outcome measures.

Results: OMT engendered a statistically significant increase of parasympathetic activity, as shown by High Frequency power (p < 0.001), expressed in normalized and absolute unit, and possibly decrease of sympathetic activity, as revealed by Low Frequency power (p < 0.01); results also showed a reduction of Low Frequency/High Frequency ratio (p < 0.001) and Detrended fluctuation scaling exponent (p < 0.05).

Conclusions: Findings suggested that OMT can influence ANS activity increasing parasympathetic function and decreasing sympathetic activity, compared to sham therapy and control group.

Keywords: autonomic nervous system; healthy subjects; heart rate variability; high frequency; osteopathic medicine; parasympathetic effect; smoking.

Figures

Figure 1
Figure 1
Flow-chart of the study.
Figure 2
Figure 2
Heart rate variability (HRV) findings for: high frequency (HF) absolute units (au, A) and normalized units (nu, B); detrended fluctuation scaling exponent (DFAα1, C); low frequency (LF, D); low frequency/high frequency ratio (LF/HF, E). Data presented are means ± standard errors of the mean (SEM). *statistically significant differences (p < 0.001) in OMT group compared to sham and control groups. # statistically significant decrease of DFAα1 (p < 0.05) in sham group compared to control. C, control; O, osteopathic manipulative treatment; S, sham therapy.
Figure 3
Figure 3
Sensitivity analysis stratified by smoking. Numbers are mean ± SEM. HF(au) (A), high frequency absolute units; HF(nu) (B), high frequency normalized unit; DFAα1 (C), detrended fluctuation scaling exponent; LF (D), low frequency; LF/HF (E), low frequency/high frequency ratio. Each figure shows HRV data recorded during the three steps of the each session: baseline (5 min), treatment (15 min), end (5 min). *p < 0.001 from regression mixed effect model. LF and LF/HF ratio showed a relevant increase in OMT group between end and treatment periods.
Figure 4
Figure 4
Sensitivity analysis stratified by non-smoking. Numbers are mean ± SEM. HF(au) (A), high frequency absolute units; HF(nu) (B), high frequency normalized unit; DFAα1 (C), detrended fluctuation scaling exponent; LF (D), low frequency; LF/HF (E), low frequency/high frequency ratio. Each figure shows HRV data recorded during the three steps of the each session: baseline (5 min), treatment (15 min), end (5 min). *p < 0.001 from regression mixed effect model.
Figure 5
Figure 5
Sensitivity analysis stratified by session 1. Numbers are mean ± SEM. HF(au) (A), high frequency absolute units; HF(nu) (B), high frequency normalized unit; DFAα1 (C), detrended fluctuation scaling exponent; LF (D), low frequency; LF/HF (E), low frequency/high frequency ratio. Each figure shows HRV data recorded during the three steps of the each session: baseline (5 min), treatment (15 min), end (5 min). *p < 0.001 from regression mixed effect model.
Figure 6
Figure 6
Sensitivity analysis stratified by session 2. Numbers are mean ± SEM. HF(au) (A), high frequency absolute units; HF(nu) (B), high frequency normalized unit; DFAα1 (C), detrended fluctuation scaling exponent; LF (D), low frequency; LF/HF (E), low frequency/high frequency ratio. Each figure shows HRV data recorded during the three steps of the each session: baseline (5 min), treatment (15 min), end (5 min). *p < 0.001 from regression mixed effect model. Significant differences between baseline and end periods are shown only for HF and LF/HF-values.

References

    1. Aa.Vv (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Circulation 93, 1043–1065. 10.1161/01.CIR.93.5.1043
    1. Anderson B., Nielsen A., McKee D., Jeffres A., Kligler B. (2012). Acupuncture and heart rate variability: a systems level approach to understanding mechanism. Explore (NY). 8, 99–106. 10.1016/j.explore.2011.12.002
    1. Arai Y. C., Ushida T., Matsubara T., Shimo K., Ito H., Sato Y., et al. . (2011). The influence of acupressure at extra 1 acupuncture point on the spectral entropy of the EEG and the LF/HF ratio of heart rate variability. Evid. Based Complement. Alternat. Med. 2011, 503698. 10.1093/ecam/nen061
    1. Aubert A. E., Seps B., Beckers F. (2003). Heart rate variability in athletes. Sports Med. 33, 889–919. 10.2165/00007256-200333120-00003
    1. Berntson G. G., Bigger J. T., Jr., Eckberg D. L., Grossman P., Kaufmann P. G., Malik M., et al. . (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34, 623–648. 10.1111/j.1469-8986.1997.tb02140.x
    1. Bonnemeier H., Richardt G., Potratz J., Wiegand U. K., Brandes A., Kluge N., et al. . (2003). Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J. Cardiovasc. Electrophysiol. 14, 791–799. 10.1046/j.1540-8167.2003.03078.x
    1. Caruana-Montaldo B., Gleeson K., Zwillich C. W. (2000). The control of breathing in clinical practice. Chest 117, 205–225. 10.1378/chest.117.1.205
    1. Cavallari J. M., Fang S. C., Mittleman M. A., Christiani D. C. (2010). Circadian variation of heart rate variability among welders. Occup. Environ. Med. 67, 717–719. 10.1136/oem.2010.055210
    1. Freeman J. V., Dewey F. E., Hadley D. M., Myers J., Froelicher V. F. (2006). Autonomic nervous system interaction with the cardiovascular system during exercise. Prog. Cardiovasc. Dis. 48, 342–362. 10.1016/j.pcad.2005.11.003
    1. Galetta F., Franzoni F., Fallahi P., Tocchini L., Braccini L., Santoro G., et al. . (2008). Changes in heart rate variability and QT dispersion in patients with overt hypothyroidism. Eur. J. Endocrinol. 158, 85–90. 10.1530/EJE-07-0357
    1. Gao X. Y., Wang L., Gaischek I., Michenthaler Y., Zhu B., Litscher G. (2012). Brain-modulated effects of auricular acupressure on the regulation of autonomic function in healthy volunteers. Evid. Based Complement. Alternat. Med. 2012:714391. 10.1155/2012/714391
    1. Giles P. D., Hensel K. L., Pacchia C. F., Smith M. L. (2013). Suboccipital decompression enhances heart rate variability indices of cardiac control in healthy subjects. J. Altern. Complement. Med. 19, 92–96. 10.1089/acm.2011.0031
    1. Guyton A. C., Hall J. E. (2006). Fisiologia Medica. Milano: Edizione Italiana a Cura Luciano Zocchi © Elsevier S.r.l. undicesima edizione: parte XI, Capitolo 60.
    1. Haker E., Egekvist H., Bjerring P. (2000). Effect of sensory stimulation (acupuncture) on sympathetic and parasympathetic activities in healthy subjects. J. Auton. Nerv. Syst. 79, 52–59. 10.1016/S0165-1838(99)00090-9
    1. Hardstone R., Poil S. S., Schiavone G., Jansen R., Nikulin V. V., Mansvelder H. D., et al. . (2012). Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front. Physiol. 3:450. 10.3389/fphys.2012.00450
    1. Henley C. E., Ivins D., Mills M., Wen F. K., Benjamin B. A. (2008). Osteopathic manipulative treatment and its relationship to autonomic nervous system activity as demonstrated by heart rate variability: a repeated measures study. Osteopath. Med. Prim. Care 2:7. 10.1186/1750-4732-2-7
    1. Hess W. R. (1955). Diencephalon, autonomic and extrapyramidal functions. Am. J. Med. Sci. 229, 469 10.1097/00000441-195504000-00017
    1. Huang T., Zhang W., Jia S., Tian Y., Wang G., Yang L., et al. . (2012). A transcontinental pilot study for acupuncture lifting-thrusting and twisting-rotating manipulations. Evid. Based Complement. Alternat. Med. 2012:157989. 10.1155/2012/157989
    1. Huikuri H. V., Kessler K. M., Terracall E., Castellanos A., Linnaluoto M. K., Myerburg R. J. (1990). Reproducibility and circadian rhythm of heart rate variability in healthy subjects. Am. J. Cardiol. 65, 391–393. 10.1016/0002-9149(90)90308-N
    1. Kara T., Nykodym J., Somers V. K. (2003). Heart rate variability: back to the beginning. J. Cardiovasc. Electrophysiol. 14, 800–802. 10.1046/j.1540-8167.2003.03258.x
    1. Karemaker J. M., Lie K. I. (2000). Heart rate variability: a telltale of health or disease. Eur. Heart J. 21, 435–437. 10.1053/euhj.1999.1969
    1. Kemp A. H., Quintana D. S., Felmingham K. L., Matthews S., Jelinek H. F. (2012). Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, unmedicated patients: implications for cardiovascular risk. PLoS ONE 7:e30777. 10.1371/journal.pone.0030777
    1. Kemp A. H., Quintana D. S., Gray M. A., Felmingham K. L., Brown K., Gatt J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol. Psychiatry 67, 1067–1074. 10.1016/j.biopsych.2009.12.012
    1. Lane R. D., McRae K., Reiman E. M., Chen K., Ahern G. L., Thayer J. F. (2009). Neural correlates of heart rate variability during emotion. Neuroimage 44, 213–222. 10.1016/j.neuroimage.2008.07.056
    1. Lee Y. H., Park B. N., Kim S. H. (2011). The effects of heat and massage application on autonomic nervous system. Yonsei Med. J. 52, 982–989. 10.3349/ymj.2011.52.6.982
    1. Li Z., Jiao K., Chen M., Wang C. (2003). Effect of magnitopuncture on sympathetic and parasympathetic nerve activities in healthy drivers–assessment by power spectrum analysis of heart rate variability. Eur. J. Appl. Physiol. 88, 404–410. 10.1007/s00421-002-0747-5
    1. Litscher G. (2009). Ten years evidence-based high-tech acupuncture-a short review of centrally measured effects (Part II). Evid. Based Complement. Alternat. Med. 6, 305–314. 10.1093/ecam/nem169
    1. Litscher G. (2010). Ten years evidence-based high-tech acupuncture part 3: a short review of animal experiments. Evid. Based Complement. Alternat. Med. 7, 151–155. 10.1093/ecam/nen034
    1. Litscher G., Cheng G., Wang L., Cheng W., Su H., Niu Q., et al. . (2012). Biomedical teleacupuncture between China and Austria using heart rate variability-part 2: patients with depression. Evid. Based Complement. Alternat. Med. 2012:145904. 10.1155/2012/145904
    1. Magoun (1976). Osteopathy in the Cranial Field, 3rd Edn. Kirksville, MO: Journal Printing Co.
    1. Malliani A., Montano N. (2002). Heart rate variability as a clinical tool. Ital. Heart J. 3, 439–445.
    1. Malliani A., Pagani M., Lombardi F., Cerutti S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation 84, 482–492. 10.1161/01.CIR.84.2.482
    1. Meissner K. (2011). The placebo effect and the autonomic nervous system: evidence for an intimate relationship. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 1808–1817. 10.1098/rstb.2010.0403
    1. Minami J., Ishimitsu T., Matsuoka H. (1999). Effects of smoking cessation on blood pressure and heart rate variability in habitual smokers. Hypertension 33, 586–590. 10.1161/01.HYP.33.1.586
    1. Mishra N., Muraleedharan K. C., Paranjpe A. S., Munta D. K., Singh H., Nayak C. (2011). An exploratory study on scientific investigations in homeopathy using medical analyzer. J. Altern. Complement. Med. 17, 705–710. 10.1089/acm.2010.0334
    1. Pagani M., Lombardi F., Guzzetti S., Rimoldi O., Furlan R., Pizzinelli P., et al. . (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59, 178–193. 10.1161/01.RES.59.2.178
    1. Peng C.-K., Mietus J., Hausdorff J. M., Havlin S., Stanley H. E., Goldberger A. L. (1993). Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70, 1343–1346. 10.1103/PhysRevLett.70.1343
    1. Ponard J. G., Kondratyev A. A., Kucera J. P. (2007). Mechanisms of intrinsic beating variability in cardiac cell cultures and model pacemaker networks. Biophys. J. 92, 3734–3752. 10.1529/biophysj.106.091892
    1. Pope C. A., III, Eatough D. J., Gold D. R., Pang Y., Nielsen K. R., Nath P., et al. . (2001). Acute exposure to environmental tobacco smoke and heart rate variability. Environ. Health Perspect. 109, 711–716. 10.1289/ehp.01109711
    1. Porta A., D'Addio G., Guzzetti S., Lucini D., Pagani M. (2004). Testing the presence of non stationarities in short heart rate variability. Comput. Cardiol. 31, 645–648. 10.1109/CIC.2004.1443021
    1. Porta A., Guzzetti S., Montano N., Furlan R., Pagani M., Malliani A., et al. . (2001). Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng. 48, 1282–1291. 10.1109/10.959324
    1. Pumprla J., Howorka K., Groves D., Chester M., Nolan J. (2002). Functional assessment of heart rate variability: physiological basis and practical applications. Int. J. Cardiol. 84, 1–14. 10.1016/S.0167-5273(02)00057-8
    1. R Developmental Core Team (2010). R: A Language and Environment for Statistical Computing. Vienna: R Foundation or Statistical Computing.
    1. Routledge F. S., Campbell T. S., McFetridge-Durdle J. A., Bacon S. L. (2010). Improvements in heart rate variability with exercise therapy. Can. J. Cardiol. 26, 303–312. 10.1016/S0828-282X(10)70395-0
    1. Stohl L. L., Zang J. B., Ding W., Manni M., Zhou X. K., Granstein R. D. (2013). Norepinephrine and adenosine-5'-triphosphate synergize in inducing IL-6 production by human dermal microvascular endothelial cells. Cytokine 64, 605–612. 10.1016/j.cyto.2013.08.005
    1. Taylor J. A., Carr D. L., Myers C. W., Eckberg D. L. (1998). Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation 98, 547–555. 10.1161/01.CIR.98.6.547
    1. Tracey K. J. (2002). The inflammatory reflex. Nature 420, 853–859. 10.1038/nature01321

Source: PubMed

Подписаться