MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment

Adriaan H de Wilde, V Stalin Raj, Diede Oudshoorn, Theo M Bestebroer, Stefan van Nieuwkoop, Ronald W A L Limpens, Clara C Posthuma, Yvonne van der Meer, Montserrat Bárcena, Bart L Haagmans, Eric J Snijder, Bernadette G van den Hoogen, Adriaan H de Wilde, V Stalin Raj, Diede Oudshoorn, Theo M Bestebroer, Stefan van Nieuwkoop, Ronald W A L Limpens, Clara C Posthuma, Yvonne van der Meer, Montserrat Bárcena, Bart L Haagmans, Eric J Snijder, Bernadette G van den Hoogen

Abstract

Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. The 2003 outbreak of severe acute respiratory syndrome (SARS) highlighted the potentially lethal consequences of CoV-induced disease in humans. In 2012, a novel CoV (Middle East Respiratory Syndrome coronavirus; MERS-CoV) emerged, causing 49 human cases thus far, of which 23 had a fatal outcome. In this study, we characterized MERS-CoV replication and cytotoxicity in human and monkey cell lines. Electron microscopy of infected Vero cells revealed extensive membrane rearrangements, including the formation of double-membrane vesicles and convoluted membranes, which have been implicated previously in the RNA synthesis of SARS-CoV and other CoVs. Following infection, we observed rapidly increasing viral RNA synthesis and release of high titres of infectious progeny, followed by a pronounced cytopathology. These characteristics were used to develop an assay for antiviral compound screening in 96-well format, which was used to identify cyclosporin A as an inhibitor of MERS-CoV replication in cell culture. Furthermore, MERS-CoV was found to be 50-100 times more sensitive to alpha interferon (IFN-α) treatment than SARS-CoV, an observation that may have important implications for the treatment of MERS-CoV-infected patients. MERS-CoV infection did not prevent the IFN-induced nuclear translocation of phosphorylated STAT1, in contrast to infection with SARS-CoV where this block inhibits the expression of antiviral genes. These findings highlight relevant differences between these distantly related zoonotic CoVs in terms of their interaction with and evasion of the cellular innate immune response.

Figures

Fig. 1.
Fig. 1.
Kinetics of MERS-CoV replication in Vero and Huh7 cells. Vero and Huh7 cells were infected with MERS-CoV (m.o.i. of 5). (a) Hybridization analysis of viral mRNAs isolated from MERS-CoV-infected cells using an oligonucleotide recognizing the viral genome and all sg mRNAs. Additional minor bands of ~3 and ~4 kb were observed (*) and may represent additional viral mRNA species that remain to be studied in more detail. However, the corresponding positions in the ORF4a/b and ORF5 coding regions do not contain a canonical core TRS sequence (AACGAA; van Boheemen et al., 2012) that might provide a direct explanation for their synthesis. (b) Analysis of the relative molarities of viral genome and each of the sg mRNAs (% of total viral mRNA). mRNA sizes were calculated on the basis of the TRS positions in the viral genome sequence (van Boheemen et al., 2012). Phosphorimager quantification was performed on the gel lanes with the RNA samples isolated from Vero cells at 10, 13 and 24 h p.i. (Fig. 1a; lanes 3–5, respectively; mean±sd). (c) Release of infectious MERS-CoV progeny into the medium of infected Vero or Huh7 cells at the indicated time points, as determined by plaque assay (mean±sd; n = 4).
Fig. 2.
Fig. 2.
Selected rabbit antisera raised against SARS-CoV and mouse hepatitis virus (MHV) nsps cross-react with MERS-CoV proteins. (a) MERS-CoV-infected Vero cells (m.o.i. of 5) were fixed at 8 h p.i. For immunofluorescence microscopy, cells were double-labelled with a mouse mAb recognizing dsRNA (bottom row) and rabbit antisera raised against SARS-CoV nsp3, nsp4, nsp5 or nsp8, or MHV nsp4 (top row). Bar, 20 µm. (b) Sequence comparison of the C-terminal domain of nsp4 of SARS-CoV (isolate Frankfurt 1), MERS-CoV (strain EMC/2012) and MHV (strain A59). The SARS-CoV and MHV sequences correspond to the synthetic peptides used to raise rabbit anti-nsp4 sera. Residues conserved in all three viruses are highlighted in yellow, whereas residues conserved in two out of three are highlighted in grey. Amino acid numbers refer to the full-length pp1a sequence. (c) Monolayers of Vero, Vero E6, Huh7 and Calu3/2B4 cells were infected with MERS-CoV (m.o.i. of 5) and double-labelled for dsRNA (green) and nsp3 (red). Bar, 40 µm.
Fig. 3.
Fig. 3.
Membrane structures induced by MERS-CoV infection. (a–d) Electron micrographs of thin sections (100 nm) of MERS-CoV-infected Vero cells at 8 h p.i. Low magnification images of a cell containing a small cluster of DMVs (a), enlarged in (b). Some DMVs are indicated by black arrowheads and the inset displays a higher magnification of the boxed DMV in (b). Extensive membrane alterations in the perinuclear region are shown in (c), with the boxed area displayed at higher magnification in (d), where CMs (white arrows, inset) embedded in clusters of DMVs (black arrowheads) can be observed. (e, f) For comparison, (e) shows the unaltered cytoplasm of a mock-infected cell and (f) contains SARS-CoV-induced DMV (black arrowheads) as observed after HPF and freeze substitution. N, nucleus; m, mitochondria. Bars, 2 µm (a, c, e); 500 nm (b, d, f).
Fig. 4.
Fig. 4.
MERS-CoV infection induces severe cytopathology in monkey and human cell lines. Monolayers of Vero (a), Calu3/2B4 (b), Vero E6 (c) and Huh7 (d) cells were infected with MERS-CoV (m.o.i. of 0.05) and analysed by light microscopy at the indicated time points. Bar, 100 µm.
Fig. 5.
Fig. 5.
Development of an assay to screen for compounds inhibiting MERS-CoV replication. Vero (a, c) and Huh7 (b, d) cells in a 96-well plate format were infected at an m.o.i. of 0.005 or 0.05. Mock-infected cells (no virus) were used as a reference for unchanged cell viability (their relative viability was set at 100 %). Infected Vero cells were incubated for 2 (dark shading) or 3 (light shading) days (a) and Huh7 cells were incubated for 1 (dark shading) or 2 (light shading) days (b). (c) Vero cells were infected (dark shading) or not (light shading) with MERS-CoV (m.o.i. of 0.005) in the presence of 3 or 9 µM CsA, or 0.09 % DMSO as a solvent control. (d) Huh7 cells were infected (dark shading) or not (light shading) with MERS-CoV (m.o.i. of 0.005) in the presence of 3.75, 7.5 or 15 µM CsA, or 0.15 % DMSO. The graphs in (c) and (d) show the results of a representative experiment (mean±sd; n = 4). All experiments were repeated at least twice.
Fig. 6.
Fig. 6.
Sensitivity of MERS-CoV and SARS-CoV to PEG-IFN. Vero cells were incubated with 0–1000 ng PEG-IFN ml−1 at t = −4, t = 0 and t = 4 h p.i. Cells were infected with 100 TCID50 virus per well (a, b). At 2 days p.i., cells were examined for CPE. The effect of PEG-IFN treatment on CPE induced by SARS-CoV (a) or MERS-CoV (b) is shown. CPE was scored as none (0), mild (1), moderate (2), severe (3) or complete (4). (c, d) Viral genomes in the culture medium of virus-infected cells were determined by RT-PCR. The influence of PEG-IFN treatment on the viral RNA load [genome equivalents (gen. eq.) ml−1] in the supernatants of cells infected with SARS-CoV (c) or MERS-CoV (d) is shown.
Fig. 7.
Fig. 7.
IFN-α induced nuclear translocation of p-STAT1 in MERS-CoV-infected Vero cells. Confocal immunofluorescence microscopy of uninfected Vero cells (a–d) and Vero cells infected (m.o.i. of 1) with SARS-CoV (e, f) or MERS-CoV (g, h). At 8 h p.i. cells were left untreated (a, b) or treated (c–h) with 1000 ng PEG-IFN ml−1 for 30 min, fixed and double-labelled with antisera against SARS-CoV nsp3 (red; a–h), or p-STAT1 (green; b, d, f, h), and nuclear DNA was stained with DAPI (blue; a, c, e, g).

References

    1. Belouzard S., Millet J. K., Licitra B. N., Whittaker G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4, 1011–1033 10.3390/v4061011
    1. Bergman S. J., Ferguson M. C., Santanello C. (2011). Interferons as therapeutic agents for infectious diseases. Infect Dis Clin North Am 25, 819–834 10.1016/j.idc.2011.07.008
    1. Brockway S. M., Clay C. T., Lu X. T., Denison M. R. (2003). Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J Virol 77, 10515–10527 10.1128/JVI.77.19.10515-10527.2003
    1. Cameron M. J., Kelvin A. A., Leon A. J., Cameron C. M., Ran L., Xu L., Chu Y. K., Danesh A., Fang Y. & other authors (2012). Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model. PLoS ONE 7, e45842 10.1371/journal.pone.0045842
    1. Cervantes-Barragan L., Züst R., Weber F., Spiegel M., Lang K. S., Akira S., Thiel V., Ludewig B. (2007). Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 109, 1131–1137 10.1182/blood-2006-05-023770
    1. de Groot R. J., Cowley J. A., Enjuanes L., Faaberg K. S., Perlman S., Rottier P. J., Snijder E. J., Ziebuhr J., Gorbalenya A. E. (2012). Order of Nidovirales. In Virus Taxonomy, the 9th Report of the International Committee on Taxonomy of Viruses, pp. 785–795 Edited by King A., Adams M., Carstens E., Lefkowitz E. J. Amsterdam: Academic Press
    1. de Groot R. J., Baker S. C., Baric R. S., Brown C. S., Drosten C., Enjuanes L., Fouchier R. A., Galiano M., Gorbalenya A. E., other authors (2013). Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. J Virol 87, in press (10.1128/JVI.01244-13).
    1. de Wilde A. H., Zevenhoven-Dobbe J. C., van der Meer Y., Thiel V., Narayanan K., Makino S., Snijder E. J., van Hemert M. J. (2011). Cyclosporin A inhibits the replication of diverse coronaviruses. J Gen Virol 92, 2542–2548 10.1099/vir.0.034983-0
    1. Drosten C., Günther S., Preiser W., van der Werf S., Brodt H. R., Becker S., Rabenau H., Panning M., Kolesnikova L. & other authors (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348, 1967–1976 10.1056/NEJMoa030747
    1. Fouchier R. A., Hartwig N. G., Bestebroer T. M., Niemeyer B., de Jong J. C., Simon J. H., Osterhaus A. D. (2004). A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci U S A 101, 6212–6216 10.1073/pnas.0400762101
    1. Frieman M., Yount B., Heise M., Kopecky-Bromberg S. A., Palese P., Baric R. S. (2007). Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81, 9812–9824 10.1128/JVI.01012-07
    1. Garlinghouse L. E., Jr, Smith A. L., Holford T. (1984). The biological relationship of mouse hepatitis virus (MHV) strains and interferon: in vitro induction and sensitivities. Arch Virol 82, 19–29 10.1007/BF01309365
    1. Gorbalenya A. E., Enjuanes L., Ziebuhr J., Snijder E. J. (2006). Nidovirales: evolving the largest RNA virus genome. Virus Res 117, 17–37 10.1016/j.virusres.2006.01.017
    1. Gosert R., Kanjanahaluethai A., Egger D., Bienz K., Baker S. C. (2002). RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76, 3697–3708 10.1128/JVI.76.8.3697-3708.2002
    1. Haagmans B. L., Kuiken T., Martina B. E., Fouchier R. A., Rimmelzwaan G. F., van Amerongen G., van Riel D., de Jong T., Itamura S. & other authors (2004). Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 10, 290–293 10.1038/nm1001
    1. Hamre D., Procknow J. J. (1966). A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 121, 190–193
    1. Hussain S., Perlman S., Gallagher T. M. (2008). Severe acute respiratory syndrome coronavirus protein 6 accelerates murine hepatitis virus infections by more than one mechanism. J Virol 82, 7212–7222 10.1128/JVI.02406-07
    1. Huynh J., Li S., Yount B., Smith A., Sturges L., Olsen J. C., Nagel J., Johnson J. B., Agnihothram S. & other authors (2012). Evidence supporting a zoonotic origin of human coronavirus strain NL63. J Virol 86, 12816–12825 10.1128/JVI.00906-12
    1. Kindler E., Jónsdóttir H. R., Muth D., Hamming O. J., Hartmann R., Rodriguez R., Geffers R., Fouchier R. A., Drosten C. & other authors (2013). Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. MBio 4, e00611-12 10.1128/mBio.00611-12
    1. Knoops K., Kikkert M., Worm S. H., Zevenhoven-Dobbe J. C., van der Meer Y., Koster A. J., Mommaas A. M., Snijder E. J. (2008). SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6, e226 10.1371/journal.pbio.0060226
    1. Knoops K., Bárcena M., Limpens R. W., Koster A. J., Mommaas A. M., Snijder E. J. (2012). Ultrastructural characterization of arterivirus replication structures: reshaping the endoplasmic reticulum to accommodate viral RNA synthesis. J Virol 86, 2474–2487 10.1128/JVI.06677-11
    1. Kopecky-Bromberg S. A., Martinez-Sobrido L., Palese P. (2006). 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. J Virol 80, 785–793 10.1128/JVI.80.2.785-793.2006
    1. Ksiazek T. G., Erdman D., Goldsmith C. S., Zaki S. R., Peret T., Emery S., Tong S., Urbani C., Comer J. A. & other authors (2003). A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953–1966 10.1056/NEJMoa030781
    1. Kuiken T., Fouchier R. A., Schutten M., Rimmelzwaan G. F., van Amerongen G., van Riel D., Laman J. D., de Jong T., van Doornum G. & other authors (2003). Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270 10.1016/S0140-6736(03)13967-0
    1. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H. W., Wong B. H., Wong S. S., Leung S. Y., Chan K. H., Yuen K. Y. (2005). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102, 14040–14045 10.1073/pnas.0506735102
    1. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H., Wang H., Crameri G., Hu Z. & other authors (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 10.1126/science.1118391
    1. McIntosh K., Dees J. H., Becker W. B., Kapikian A. Z., Chanock R. M. (1967). Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci U S A 57, 933–940 10.1073/pnas.57.4.933
    1. Müller M. A., Raj V. S., Muth D., Meyer B., Kallies S., Smits S. L., Wollny R., Bestebroer T. M., Specht S. & other authors (2012). Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. MBio 3, e00515-12 10.1128/mBio.00515-12
    1. Nagy P. D., Wang R. Y., Pogany J., Hafren A., Makinen K. (2011). Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 411, 374–382 10.1016/j.virol.2010.12.061
    1. Paragas J., Blatt L. M., Hartmann C., Huggins J. W., Endy T. P. (2005). Interferon alfacon1 is an inhibitor of SARS-corona virus in cell-based models. Antiviral Res 66, 99–102 10.1016/j.antiviral.2005.01.002
    1. Perlman S., Netland J. (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7, 439–450 10.1038/nrmicro2147
    1. Pfefferle S., Oppong S., Drexler J. F., Gloza-Rausch F., Ipsen A., Seebens A., Müller M. A., Annan A., Vallo P. & other authors (2009). Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis 15, 1377–1384 10.3201/eid1509.090224
    1. Pfefferle S., Schöpf J., Kögl M., Friedel C. C., Müller M. A., Carbajo-Lozoya J., Stellberger T., von Dall’Armi E., Herzog P. & other authors (2011). The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog 7, e1002331 10.1371/journal.ppat.1002331
    1. Raj V. S., Mou H., Smits S. L., Dekkers D. H., Müller M. A., Dijkman R., Muth D., Demmers J. A., Zaki A. & other authors (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251–254 10.1038/nature12005
    1. Randall R. E., Goodbourn S. (2008). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89, 1–47 10.1099/vir.0.83391-0
    1. Ratia K., Saikatendu K. S., Santarsiero B. D., Barretto N., Baker S. C., Stevens R. C., Mesecar A. D. (2006). Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A 103, 5717–5722 10.1073/pnas.0510851103
    1. Rose K. M., Elliott R., Martínez-Sobrido L., García-Sastre A., Weiss S. R. (2010). Murine coronavirus delays expression of a subset of interferon-stimulated genes. J Virol 84, 5656–5669 10.1128/JVI.00211-10
    1. Roth-Cross J. K., Martínez-Sobrido L., Scott E. P., García-Sastre A., Weiss S. R. (2007). Inhibition of the alpha/beta interferon response by mouse hepatitis virus at multiple levels. J Virol 81, 7189–7199 10.1128/JVI.00013-07
    1. Sims A. C., Tilton S. C., Menachery V. D., Gralinski L. E., Schäfer A., Matzke M. M., Webb-Robertson B. J., Chang J., Luna M. L. & other authors (2013). Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells. J Virol 87, 3885–3902 10.1128/JVI.02520-12
    1. Snijder E. J., Wassenaar A. L., Spaan W. J. (1994). Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J Virol 68, 5755–5764
    1. Snijder E. J., Bredenbeek P. J., Dobbe J. C., Thiel V., Ziebuhr J., Poon L. L., Guan Y., Rozanov M., Spaan W. J., Gorbalenya A. E. (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331, 991–1004 10.1016/S0022-2836(03)00865-9
    1. Snijder E. J., van der Meer Y., Zevenhoven-Dobbe J., Onderwater J. J., van der Meulen J., Koerten H. K., Mommaas A. M. (2006). Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 80, 5927–5940 10.1128/JVI.02501-05
    1. Stertz S., Reichelt M., Spiegel M., Kuri T., Martínez-Sobrido L., García-Sastre A., Weber F., Kochs G. (2007). The intracellular sites of early replication and budding of SARS-coronavirus. Virology 361, 304–315 10.1016/j.virol.2006.11.027
    1. Taguchi F., Siddell S. G. (1985). Difference in sensitivity to interferon among mouse hepatitis viruses with high and low virulence for mice. Virology 147, 41–48 10.1016/0042-6822(85)90225-9
    1. Ulasli M., Verheije M. H., de Haan C. A., Reggiori F. (2010). Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cell Microbiol 12, 844–861 10.1111/j.1462-5822.2010.01437.x
    1. van Boheemen S., de Graaf M., Lauber C., Bestebroer T. M., Raj V. S., Zaki A. M., Osterhaus A. D., Haagmans B. L., Gorbalenya A. E. & other authors (2012). Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3, e00473-12 10.1128/mBio.00473-12
    1. van den Worm S. H., Eriksson K. K., Zevenhoven J. C., Weber F., Züst R., Kuri T., Dijkman R., Chang G., Siddell S. G. & other authors (2012). Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination. PLoS ONE 7, e32857 10.1371/journal.pone.0032857
    1. van der Hoek L., Pyrc K., Jebbink M. F., Vermeulen-Oost W., Berkhout R. J., Wolthers K. C., Wertheim-van Dillen P. M., Kaandorp J., Spaargaren J., Berkhout B. (2004). Identification of a new human coronavirus. Nat Med 10, 368–373 10.1038/nm1024
    1. van der Meer Y., van Tol H., Locker J. K., Snijder E. J. (1998). ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J Virol 72, 6689–6698
    1. van Hemert M. J., de Wilde A. H., Gorbalenya A. E., Snijder E. J. (2008a). The in vitro RNA synthesizing activity of the isolated arterivirus replication/transcription complex is dependent on a host factor. J Biol Chem 283, 16525–16536 10.1074/jbc.M708136200
    1. van Hemert M. J., van den Worm S. H., Knoops K., Mommaas A. M., Gorbalenya A. E., Snijder E. J. (2008b). SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog 4, e1000054 10.1371/journal.ppat.1000054
    1. van Kasteren P. B., Bailey-Elkin B. A., James T. W., Ninaber D. K., Beugeling C., Khajehpour M., Snijder E. J., Mark B. L., Kikkert M. (2013). Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 110, E838–E847 10.1073/pnas.1218464110
    1. Versteeg G. A., Bredenbeek P. J., van den Worm S. H., Spaan W. J. (2007). Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. Virology 361, 18–26 10.1016/j.virol.2007.01.020
    1. Vijaykrishna D., Smith G. J., Zhang J. X., Peiris J. S., Chen H., Guan Y. (2007). Evolutionary insights into the ecology of coronaviruses. J Virol 81, 4012–4020 10.1128/JVI.02605-06
    1. Vijgen L., Keyaerts E., Moës E., Thoelen I., Wollants E., Lemey P., Vandamme A. M., Van Ranst M. (2005). Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 79, 1595–1604 10.1128/JVI.79.3.1595-1604.2005
    1. Weber F., Wagner V., Rasmussen S. B., Hartmann R., Paludan S. R. (2006). Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80, 5059–5064 10.1128/JVI.80.10.5059-5064.2006
    1. Woo P. C., Lau S. K., Chu C. M., Chan K. H., Tsoi H. W., Huang Y., Wong B. H., Poon R. W., Cai J. J. & other authors (2005). Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79, 884–895 10.1128/JVI.79.2.884-895.2005
    1. Woo P. C., Wang M., Lau S. K., Xu H., Poon R. W., Guo R., Wong B. H., Gao K., Tsoi H. W. & other authors (2007). Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol 81, 1574–1585 10.1128/JVI.02182-06
    1. Yoshikawa T., Hill T. E., Yoshikawa N., Popov V. L., Galindo C. L., Garner H. R., Peters C. J., Tseng C. T. (2010). Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. PLoS ONE 5, e8729 10.1371/journal.pone.0008729
    1. Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A. D., Fouchier R. A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367, 1814–1820 10.1056/NEJMoa1211721
    1. Zeng F. Y., Chan C. W., Chan M. N., Chen J. D., Chow K. Y., Hon C. C., Hui K. H., Li J., Li V. Y. & other authors (2003). The complete genome sequence of severe acute respiratory syndrome coronavirus strain HKU-39849 (HK-39). Exp Biol Med (Maywood) 228, 866–873
    1. Zheng B., He M. L., Wong K. L., Lum C. T., Poon L. L., Peng Y., Guan Y., Lin M. C., Kung H. F. (2004). Potent inhibition of SARS-associated coronavirus (SCOV) infection and replication by type I interferons (IFN-α/β) but not by type II interferon (IFN-γ). J Interferon Cytokine Res 24, 388–390 10.1089/1079990041535610
    1. Zhong Y., Tan Y. W., Liu D. X. (2012). Recent progress in studies of arterivirus– and coronavirus–host interactions. Viruses 4, 980–1010 10.3390/v4060980
    1. Zhou P., Li H., Wang H., Wang L. F., Shi Z. (2012). Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities. J Gen Virol 93, 275–281 10.1099/vir.0.033589-0
    1. Züst R., Cervantes-Barragan L., Habjan M., Maier R., Neuman B. W., Ziebuhr J., Szretter K. J., Baker S. C., Barchet W. & other authors (2011). Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12, 137–143 10.1038/ni.1979

Source: PubMed

Подписаться