Validity of a two-item physical activity questionnaire for assessing attainment of physical activity guidelines in youth

Michelle Hardie Murphy, David A Rowe, Sarahjane Belton, Catherine B Woods, Michelle Hardie Murphy, David A Rowe, Sarahjane Belton, Catherine B Woods

Abstract

Background: As physical activity is important for health and well-being, it is essential to monitor population prevalence of physical activity. Surveillance is dependent on the use of valid and reliable measurement tools. The PACE+ questionnaire is used globally in youth and has acceptable reliability; however it has not been validated in a European sample. The purpose of this study is to validate this instrument in a sample of 10-18 year old Irish youth.

Methods: Participants (n = 419, 45.7 % male) completed the PACE+ two-item questionnaire and were asked to wear an Actigraph accelerometer for eight consecutive days. Freedson cut-points were used to estimate moderate to vigorous physical activity from accelerometer counts. Analyses compared self-report and accelerometry data in participants with (1) ≥5 and (2) seven valid accelerometer days. Calculations were performed for the whole sample, and were stratified by sex and school level (primary; post-primary).

Results: Spearman correlations between self-reported physical activity levels and accelerometry derived minutes of moderate-to-vigorous physical activity per day were small (r = 0.27; seven valid days) to moderate (r = 0.34; ≥5 valid days). Higher correlations were found in older participants (post-primary r = 0.39; primary r = 0.24) and females (r = 0.39; males r = 0.27) using ≥5 valid days. The agreement level was high (68-96 %). The accuracy of classifying those not meeting the guidelines (specificity) was moderate to high (59-100 %).

Conclusions: The PACE+ self-report instrument has acceptable validity for assessing non-achievement of the adolescent physical activity recommendations. The validity is higher in females and increases with age. The continued use of the tool is recommended and will allow for comparability between studies, tracking of physical activity over time including trends in youth population prevalence.

References

    1. World Health Organization . Global recommendations on physical activity for health. Geneva, Switzerland: WHO; 2010.
    1. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57. doi: 10.1016/S0140-6736(12)60646-1.
    1. Kohl HW III, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: Global action for public health. Lancet. 2012;380(9838):294–305.
    1. Janz KF. Physical activity in epidemiology: Moving from questionnaire to objective measurement. Br J Sports Med. 2006;40:191–2. doi: 10.1136/bjsm.2005.023036.
    1. Shephard RJ. Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med. 2003;37(3):197–206. doi: 10.1136/bjsm.37.3.197.
    1. Milton K, Clemes S, Bull F. Can a single question provide an accurate measure of physical activity? Br J Sports Med. 2013;47(1):44–8. doi: 10.1136/bjsports-2011-090899.
    1. Sarkin JA, Nichols JF, Sallis JF, Calfas KJ. Self-report measures and scoring protocols affect prevalence estimates of meeting physical activity guidelines. Med Sci Sports Exerc. 2000;32(1):149–56. doi: 10.1097/00005768-200001000-00022.
    1. Warren JM, Ekelund U, Besson H, Mezzani A, Geladas N, Vanhees L. Assessment of physical activity - a review of methodologies with reference to epidemiological research: A report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010;17(2):127–39.
    1. World Health Organization Europe . Report of the workshop on integration of data on physical activity patterns. Report No. 4. Zurich, Switzerland: WHO; 2009.
    1. Ridgers ND, Timperio A, Crawford D, Salmon J. Validity of a brief self-report instrument for assessing compliance with physical activity guidelines amongst adolescents. J Sci Med Sport. 2012;15:136–41. doi: 10.1016/j.jsams.2011.09.003.
    1. Biddle S, Sallis JF, Cavill NA. Young and active? Young people and health-enhancing physical activity: evidence and implications. London: Health Education Authority; 1998.
    1. Prochaska JJ, Sallis JF, Long B. A physical activity screening measure for use with adolescents in primary care. Arch Pediatr Adolesc Med. 2001;155(5):554–9. doi: 10.1001/archpedi.155.5.554.
    1. Fitzgerald L, Ozemek C, Jarrett H, Kaminsky LA. Accelerometer validation of questionnaires used in clinical settings to assess MVPA. Med Sci Sports Exerc. 2015;47(7):1538–42. doi: 10.1249/MSS.0000000000000565.
    1. Garriguet D, Tremblay S, Colley RC. Comparison of physical activity adult questionnaire results with accelerometer data. Health Rep. 2015;26(7):11–7.
    1. Vega-Lopez S, Chavez A, Farr KJ, Ainsworth BE. Validity and reliability of two brief physical activity questionnaires among Spanish-speaking individuals of Mexican descent. BMC Res Notes. 2014;7:29. doi: 10.1186/1756-0500-7-29.
    1. Troped PJ, Wiecha JL, Fragala MS, Matthews CE, Finkelstein DM, Kim J, et al. Reliability and validity of YRBS physical activity items among middle school students. Med Sci Sports Exerc. 2007;39(3):416–25. doi: 10.1249/mss.0b013e31802d97af.
    1. Helmerhorst HJ, Brage S, Warren J, Besson H, Ekelund U. A systematic review of reliability and objective criterion-related validity of physical activity questionnaires. Int J Behav Nutr Phys Act. 2012(9).
    1. Biddle SJ, Gorely T, Pearson N, Bull FC. An assessment of self-reported physical activity instruments in young people for population surveillance: Project ALPHA. Int J Behav Nutr Phys Act. 2011(8).
    1. Currie C, Zanotti C, Morgan A, Currie D, de Looze M, Roberts C, et al. Social determinants of health and well-being among young people. Health Behaviour in School-aged Children (HBSC) study: International report from the 2009/2010 survey. Copenhagen: WHO Regional Office for Europe (Health Policy for Children and Adolescents, No. 6); 2012.
    1. Guthold R, Cowan MJ, Autenrieth CS, Kann L, Riley LM. Physical activity and sedentary behavior among schoolchildren: A 34-country comparison. J Pediatr. 2010;157(1):43–9. doi: 10.1016/j.jpeds.2010.01.019.
    1. Peltzer K. Leisure time physical activity and sedentary behavior and substance use among in-school adolescents in eight African countries. Int J Behav Med. 2010;17(4):271–8. doi: 10.1007/s12529-009-9073-1.
    1. World Health Organization. Global school-based student health survey (GSHS). Accessed 29 January 2015.
    1. Woods CB, Tannehill D, Quinlan A, Moyna NM, Walsh J. The Children’s Sport Participation and Physical Activity Study (CSPPA). Report No. 1. Dublin, Ireland: School of Health and Human Performance, Dublin City University and The Irish Sports Council; 2010.
    1. Woods CB, Nelson NM, Foley E, O’Gorman D, Moyna NM. The Take PART study: Rationale and Methodology. J Phys Act Health. 2009;6(2):170–7.
    1. Belton S, O’Brien W, Meegan S, Woods C, Issartel J. Youth-Physical Activity Towards Health: Evidence and background to the development of the Y-PATH physical activity intervention for adolescents. BMC Public Health. 2014;14:122. doi: 10.1186/1471-2458-14-122.
    1. Rowe DA, Murtagh S. FifeActive - physical activity participation in Fife schoolchildren: Research report of current levels, modes, contexts, preferences and determinants. FifeActive: Glasgow; 2012.
    1. Vuori M, Ojala K, Tynjala J, Villberg J, Valimaa R, Kannas L. The stability of physical activity survey items in the HBSC study. Liik Tiede. 2005;42(6):39–46.
    1. Liu Y, Wang M, Tynjala J, Lv Y, Villberg J, Zhang Z, et al. Test-retest reliability of selected items of Health Behaviour in School-aged Children (HBSC) survey questionnaire in Beijing, China. BMC Med Res Methodol. 2010;10:73.
    1. Bobakova D, Hamrik Z, Badura P, Sigmundova D, Nalecz H, Kalman M. Test-retest reliability of selected physical activity and sedentary behaviour HBSC items in the Czech Republic, Slovakia and Poland. Int J Public Health. 2015;60(1):59–67. doi: 10.1007/s00038-014-0628-9.
    1. Welk GJ. Principles of design and analyses for the calibration of accelerometry-based activity monitors. Med Sci Sports Exerc. 2005;37(11 Suppl):S501–11. doi: 10.1249/.
    1. Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350–5. doi: 10.1097/00005768-200202000-00025.
    1. Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37(11 Suppl):S523–30. doi: 10.1249/.
    1. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360–8. doi: 10.1249/MSS.0b013e318206476e.
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8. doi: 10.1249/mss.0b013e31815a51b3.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2. Erlbaum Associates: Hillsdale, NJ; 1988.
    1. Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(1):45–50. doi: 10.4103/0301-4738.37595.
    1. Dumith SC, Gigante DP, Domingues MR, Kohl HW III. Physical activity change during adolescence: A systematic review and a pooled analysis. Int J Epidemiol. 2011;40(3):685–98.
    1. Chinapaw MJ, Mokkink LB, van Poppel MN, van Mechelen W, Terwee CB. Physical activity questionnaires for youth: A systematic review of measurement properties. Sports Med. 2010;40(7):539–63. doi: 10.2165/11530770-000000000-00000.
    1. Loprinzi PD, Cardinal BJ. Measuring children’s physical activity and sedentary behaviors. J Exer Sci Fit. 2011;9(1):15–23. doi: 10.1016/S1728-869X(11)60002-6.
    1. Adamo KB, Prince SA, Tricco AC, Connor-Gorber S, Tremblay M. A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: A systematic review. Int J Pediatr Obes. 2009;4(1):2–27. doi: 10.1080/17477160802315010.
    1. Kim Y, Beets MW, Welk GJ. Everything you wanted to know about selecting the “right” Actigraph accelerometer cut-points for youth, but…: A systematic review. J Sci Med Sport. 2012;15(4):311–21. doi: 10.1016/j.jsams.2011.12.001.

Source: PubMed

Подписаться