Prognostic value of adipose tissue and muscle mass in advanced colorectal cancer: a post hoc analysis of two non-randomized phase II trials

Nicolas Charette, Caroline Vandeputte, Lieveke Ameye, Camille Van Bogaert, Jonathan Krygier, Thomas Guiot, Amélie Deleporte, Thierry Delaunoit, Karen Geboes, Jean-Luc Van Laethem, Marc Peeters, Gauthier Demolin, Stéphane Holbrechts, Patrick Flamen, Marianne Paesmans, Alain Hendlisz, Nicolas Charette, Caroline Vandeputte, Lieveke Ameye, Camille Van Bogaert, Jonathan Krygier, Thomas Guiot, Amélie Deleporte, Thierry Delaunoit, Karen Geboes, Jean-Luc Van Laethem, Marc Peeters, Gauthier Demolin, Stéphane Holbrechts, Patrick Flamen, Marianne Paesmans, Alain Hendlisz

Abstract

Background: The prognostic value of body composition in cancer patients has been widely studied during the last decade. The main finding of these studies is that sarcopenia, or skeletal muscle depletion, assessed by CT imaging correlates with a reduced overall survival (OS). By contrast, the prognostic value of fat mass remains ill-defined. This study aims to analyze the influence of body composition including both muscle mass and adipose tissue on OS in a homogeneous population of advanced colorectal cancer (CRC) patients.

Methods: Among 235 patients with chemorefractory advanced CRC included in the SoMore and RegARd-C trials, body composition was assessed in 217 patients on baseline CT images. The relationship between body composition (sarcopenia, muscle density, subcutaneous and visceral fat index and density), body mass index (BMI) and OS were evaluated.

Results: Patients with a higher BMI had a better OS (≥30 versus < 30, HR: 0.50; 0.33-0.76). Those with low muscle index and muscle density had an increased mortality (HR: 2.06; 1.45-2.93 and HR: 1.54; 1.09-2.18, respectively). Likewise, low subcutaneous and visceral fat index were associated with an increased risk of dying (HR: 1.63; 1.23-2.17 and 1.48; 1.09-2.02 respectively), as were a high subcutaneous and visceral adipose tissue density (HR: 1.93; 1.44-2.57 and 2.40; 1.79-3.20 respectively). In multivariate analysis, a high visceral fat density was the main predictor of poor survival.

Conclusions: Our results confirm the protective role of obesity in CRC patients at an advanced stage, as well as the negative prognostic impact of muscle depletion on survival. More importantly, our data show for the first time that visceral adipose tissue density is an important prognostic factor in metastatic CRC.

Trial registration: NCT01290926 , 07/02/2011 and NCT01929616 , 28/08/2013.

Keywords: Adipose tissue; Chemotherapy; Colorectal cancer; Myosteatosis; Obesity; Prognosis; Sarcopenia.

Conflict of interest statement

Ethics approval and consent to participate

This study has been approved by the ethics committee of Institut Jules Bordet and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Written informed consent was obtained for all participants before inclusion in the SoMore or RegARd-C trials.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
CT images of the third lumbar vertebra region in a sarcopenic (a) and a non-sarcopenic (b) patient
Fig. 2
Fig. 2
Survival curves based on skeletal muscle index (a), muscle density (b), subcutaneous fat index (c), visceral fat index (d), subcutaneous fat density (e) and visceral fat density (f). Patients with skeletal muscle index and muscle density below the thresholds had an increased mortality. Low subcutaneous and visceral fat index were also associated with an increased risk of dying. Finally, a high subcutaneous and visceral fat density also correlated with mortality

References

    1. Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, et al. Prognostic effect of weight loss prior tochemotherapy in cancer patients. Am J Med. 1980;69:491–497. doi: 10.1016/S0149-2918(05)80001-3.
    1. Pressoir M, Desné S, Berchery D, Rossignol G, Poiree B, Meslier M, et al. Prevalence, risk factors and clinical implications of malnutrition in French comprehensive Cancer Centres. Br J Cancer. 2010;102:966–971. doi: 10.1038/sj.bjc.6605578.
    1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384:766–781. doi: 10.1016/S0140-6736(14)60460-8.
    1. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet. 2014;384:755–765. doi: 10.1016/S0140-6736(14)60892-8.
    1. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489–495. doi: 10.1016/S1470-2045(10)70218-7.
    1. Thibault R, Genton L, Pichard C. Body composition: why, when and for who? Clin Nutr. 2012;31:435–447. doi: 10.1016/j.clnu.2011.12.011.
    1. Mourtzakis M, Prado CMM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33:997–1006. doi: 10.1139/H08-075.
    1. Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol. 2000;89:104–110. doi: 10.1152/jappl.2000.89.1.104.
    1. Shachar SS, Williams GR, Muss HB, Nishijima TF. Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer. 2016;57:58–67. doi: 10.1016/j.ejca.2015.12.030.
    1. Hendlisz A, Deleporte A, Delaunoit T, Maréchal R, Peeters M, Holbrechts S, et al. The prognostic significance of metabolic response heterogeneity in metastatic colorectal cancer. PLoS One. 2015;10:1–14. doi: 10.1371/journal.pone.0138341.
    1. Hendlisz A, Deleporte A, Vandeputte C, Charette N, Paesmans M, Guiot T, et al. Regorafenib assessment in refractory advanced colorectal cancer: RegARd-C study protocol. BMJ Open. 2015;5:e007189. doi: 10.1136/bmjopen-2014-007189.
    1. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–312. doi: 10.1016/S0140-6736(12)61900-X.
    1. Martin L, Birdsell L, MacDonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31:1539–1547. doi: 10.1200/JCO.2012.45.2722.
    1. Williams BA, Mandrekar JN, Mandrekar SJ, Cha SS, Furth AF. Finding optimal Cutpoints for continuous covariates with binary and time-to-event outcomes. Tech Rep Ser. 2006. .
    1. Barret M, Antoun S, Dalban C, Malka D, Mansourbakht T, Zaanan A, et al. Sarcopenia is linked to treatment toxicity in patients with metastatic colorectal cancer. Nutr Cancer. 2014;66:583–589. doi: 10.1080/01635581.2014.894103.
    1. Lieffers JR, Bathe OF. Fassbender K, Winget M, Baracos VE. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br J Cancer. 2012;107:931–936. doi: 10.1038/bjc.2012.350.
    1. van Vugt JLA, Levolger S, Gharbharan A, Koek M, Niessen WJ, Burger JWA, et al. A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. J Cachexia Sarcopenia Muscle. 2016:285–97. 10.1002/jcsm.12158.
    1. Parr CL, Batty GD, Lam TH, Barzi F, Fang X, Ho SC, et al. Body-mass index and cancer mortality in the Asia-Pacific cohort studies collaboration: pooled analyses of 424 519 participants. Lancet Oncol. 2010;11:741–752. doi: 10.1016/S1470-2045(10)70141-8.
    1. Sinicrope FA, Foster NR, Yothers G, Benson A, Seitz JF, Labianca R, et al. Body mass index at diagnosis and survival among colon cancer patients enrolled in clinical trials of adjuvant chemotherapy. Cancer. 2013;119:1528–1536. doi: 10.1002/cncr.27938.
    1. Renfro LA, Loupakis F, Adams RA, Seymour MT, Heinemann V, Schmoll HJ, et al. Body mass index is prognostic in metastatic colorectal cancer: pooled analysis of patients from first-line clinical trials in the ARCAD database. J Clin Oncol. 2016;34:144–150. doi: 10.1200/JCO.2015.61.6441.
    1. Lennon H, Sperrin M, Badrick E, Renehan AG. The obesity paradox in Cancer: a review. Curr Oncol Rep. 2016;18:1–8. doi: 10.1007/s11912-016-0539-4.
    1. Martin L, Senesse P, Gioulbasanis I, Antoun S, Bozzetti F, Deans C, et al. Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol. 2015;33:90–99. doi: 10.1200/JCO.2014.56.1894.
    1. Prado CM, Gonzalez MC, Heymsfield SB. Body composition phenotypes and obesity paradox. Curr Opin Clin Nutr Metab Care. 2015;18:535–551. doi: 10.1097/MCO.0000000000000216.
    1. Kyle UG, Morabia A, Slosman DO, Mensi N, Unger P, Pichard C. Contribution of body composition to nutritional assessment at hospital admission in 995 patients: a controlled population study. Br J Nutr. 2001;86:725–731. doi: 10.1079/BJN2001470.
    1. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–635. doi: 10.1016/S1470-2045(08)70153-0.
    1. Iwase T, Sangai T, Nagashima T, Sakakibara M, Sakakibara J, Hayama S, et al. Impact of body fat distribution on neoadjuvant chemotherapy outcomes in advanced breast cancer patients. Cancer Med. 2015:41–8.
    1. Zimmermann M, Delouya G, Barkati M, Campeau S, Rompotinos D, Taussky D. Impact of visceral fat volume and fat density on biochemical outcome after radical prostatectomy and postoperative radiotherapy. Horm Mol Biol Clin Investig. 2016;26. 10.1515/hmbci-2015-0075.
    1. Camus V, Lanic H, Kraut J, Modzelewski R, Clatot F, Picquenot JM, et al. Prognostic impact of fat tissue loss and cachexia assessed by computed tomography scan in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Eur J Haematol. 2014;93:9–18. doi: 10.1111/ejh.12285.
    1. Shin D-Y, Kim A, Byun BH, Moon H, Kim S, Ko Y-J, et al. Visceral adipose tissue is prognostic for survival of diffuse large B cell lymphoma treated with frontline R-CHOP. Ann Hematol. 2016;95:409–416. doi: 10.1007/s00277-015-2571-0.
    1. Guiu B, Petit JM, Bonnetain F, Ladoire S, Guiu S, Cercueil J-P, et al. Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut. 2010;59:341–347. doi: 10.1136/gut.2009.188946.
    1. Murphy RA, Register TC, Shively CA, Carr JJ, Ge Y, Heilbrun ME, et al. Adipose tissue density, a novel biomarker predicting mortality risk in older adults. J Gerontol A Biol Sci Med Sci. 2014;69:109–117. doi: 10.1093/gerona/glt070.
    1. Baba S, Jacene HA, Engles JM, Honda H, Wahl RL. CT Hounsfield units of Brown adipose tissue increase with activation: preclinical and clinical studies. J Nucl Med. 2010;51:246–250. doi: 10.2967/jnumed.109.068775.
    1. Batista ML, Henriques FS, Neves RX, Olivan MR, Matos-Neto EM, Alcântara PSM, et al. Cachexia-associated adipose tissue morphological rearrangement in gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle. 2016;7:37–47. doi: 10.1002/jcsm.12037.
    1. Beijer E, Schoenmakers J, Vijgen G, Kessels F, Dingemans AM, Schrauwen P, et al. A role of active brown adipose tissue in cancer cachexia? Oncol Rev. 2012;6:88–94. doi: 10.4081/oncol.2012.e11.
    1. Ahmadi N, Hajsadeghi F, Conneely M, Mingos M, Arora R, Budoff M, et al. Accurate detection of metabolically active “brown” and “white” adipose tissues with computed tomography. Acad Radiol. 2013;20:1443–1447. doi: 10.1016/j.acra.2013.08.012.

Source: PubMed

Подписаться